Daniel Bevenius [Thu, 28 Aug 2025 07:10:48 +0000 (09:10 +0200)]
ci : add github release job (#1334)
* ci : add github release job
This commit adds a GitHub Actions workflow to automate the release
process. Currently this will only create an archive of the sources for
ggml when a tag is pushed.
The motivation for this is that when we start releasing versions of ggml
using semantic versioning it can be nice to have the sources needed for
ggml to be deployed as a github release. This enables CMake users that
use `FetchContent` efficiently specify the the zip file instead of
cloning.
Example usage with `FetchContent`:
```cmake
cmake_minimum_required(VERSION 3.14)
project(ggml_example)
add_executable(ggml_example main.cpp)
target_link_libraries(ggml_example ggml)
```
And with the following `main.cpp` file:
```c++
#include <iostream>
#include <ggml.h>
int main() {
std::cout << "GGML Version: " << ggml_version() << std::endl;
return 0;
}
```
This could then be built using:
```console
$ cmake -S . -B build
$ cmake --build build
$ ./build/ggml_example
GGML Version: 0.0.2472
```
Jeff Bolz [Sun, 17 Aug 2025 16:08:57 +0000 (11:08 -0500)]
vulkan: Use larger workgroups for mul_mat_vec when M is small (llama/15355)
* vulkan: Use larger workgroups for mul_mat_vec when M is small
Also use subgroup instructions for (part of) the reduction when supported.
Without this, the more expensive reductions would eat into the benefits of
the larger workgroups.
Jeff Bolz [Sun, 17 Aug 2025 08:41:45 +0000 (03:41 -0500)]
vulkan: Optimize argsort (llama/15354)
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
Jeff Bolz [Sat, 16 Aug 2025 16:48:22 +0000 (11:48 -0500)]
vulkan: fuse adds (llama/15252)
* vulkan: fuse adds
Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.
* check runtimeDescriptorArray feature
* disable multi_add for Intel due to likely driver bug
Jeff Bolz [Sat, 16 Aug 2025 09:18:31 +0000 (04:18 -0500)]
vulkan: Support mul_mat_id with f32 accumulators (llama/15337)
* vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id
* vulkan: Support mul_mat_id with f32 accumulators, but they are not hooked up
- There's no explicit way to request f32 precision for mul_mat_id, but there
probably should be, and this gets the code in place for that.
- A couple fixes to check_results.
- Remove casts to fp16 in coopmat1 FA shader (found by inspection).
uvos [Thu, 14 Aug 2025 14:23:56 +0000 (16:23 +0200)]
HIP: Cleanup hipification header (llama/15285)
add expicit conversion operator to support older versions of rocm
Switch over to hip_bf16 from legacy hip_bfloat16
Simplify RDNA3 define
Reduce swap over of new hipblas api to rocm 6.5 as this version is used for rocm 7.0 previews
Jeff Bolz [Thu, 14 Aug 2025 13:38:10 +0000 (08:38 -0500)]
vulkan: perf_logger improvements (llama/15246)
* vulkan: perf_logger improvements
- Account for batch dimension in flops calculation.
- Fix how "_VEC" is detected for mat_mul_id.
- Fix "n" dimension for mat_mul_id (in case of broadcasting).
- Include a->type in name.
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values); tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <redacted> Co-authored-by: Johannes Gäßler <redacted>
Oliver Simons [Wed, 13 Aug 2025 08:04:46 +0000 (10:04 +0200)]
CUDA: Optimize `reduce_rows_f32` kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (llama/15132)
* Factor out `reduce_rows_f32` from common.cuh
This increases iteration cycle speed by not having to recompile
every kernel all the time
* Hide memory-latency by loop unrolling in reduce_rows_f32
* Further optimizations to `reduce_rows_f32`
1. Increase threadblock size to better hide latency of memory requests.
As a consequence of bigger threadblocks, do 2-step summation, using
shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims
* Add perf tests for `reduce_rows_f32` kernel
* Add heuristic to toggle 128/512 threads based on sm count
Break even point was the minimum of the following multiples.
| GPU Model | Nrow SM Count Multiple |
| ----------- | ----------- |
| RTX 4000 SFF ADA | 2.0x |
| RTX 6000 ADA | 2.5x |
| RTX PRO 6000 Blackwell Max-Q | 3.04x |
| RTX PRO 4500 Blackwell | 3.15x |
* Ensure perf gains also for small ncols and large nrows
Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily
* Modify perf and unit-tests
* Apply auto-formatting by clang
* Fix CI build failure
See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.
* Remove sm_count property from `ggml_backend_cuda_context`
Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect
* Add CUB-based implementation for GGML_OP_MEAN
Currently this branch is only executed for nrows==1
* Add heuristics to execute CUB branch only when it brings perf
Heuristics were determined on the following HW:
* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell
* Add unit-test for CUB-based mean
Tests should run with CUDA Graphs enabled per default on NVGPUs
* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`
Suggested by @JohannesGaessler
* Unindent Preprocessor directives
See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
Chenguang Li [Wed, 6 Aug 2025 06:12:42 +0000 (14:12 +0800)]
CANN: add support for ACL Graph (llama/15065)
* feat(cann): add optional support for ACL Graph execution
This commit adds support for executing ggml computational graphs using
Huawei's ACL graph mode via the USE_CANN_GRAPH flag. The support can be
enabled at compile time using the CMake option:
-DUSE_CANN_GRAPH=ON
By default, ACL graph execution is **disabled**, and the fallback path
uses node-by-node execution.
Key additions:
- CMake option to toggle graph mode
- Graph capture and execution logic using
- Tensor property matching to determine whether graph update is required
- Safe fallback and logging if the environment variable LLAMA_SET_ROWS
is unset or invalid
This prepares the backend for performance improvements in repetitive graph
execution scenarios on Ascend devices.
- Increase tile size for k-quants, to match non-k-quants
- Choose more carefully between large and medium tiles, considering how it
interacts with split_k
- Allow larger/non-power of two split_k, and make the splits a multiple of 256
- Use split_k==3 to when >1/2 and <=2/3 of the SMs would hae been used
Jeff Bolz [Sat, 2 Aug 2025 07:57:04 +0000 (02:57 -0500)]
vulkan: optimizations for direct convolution (llama/14933)
* vulkan: optimizations for direct convolution
- Empirically choose a better tile size. Reducing BS_K/BS_NPQ helps fill
the GPU. The new size should be amenable to using coopmat, too.
- Fix shmem bank conflicts. 16B padding should work with coopmat.
- Some explicit loop unrolling.
- Skip math/stores work for parts of the tile that are OOB.
- Apply fastdiv opt.
- Disable shuffles for NV.
* Three tiles sizes for CONV_2D, and a heuristic to choose
* reallow collectives for pre-Turing
* make SHMEM_PAD a spec constant
* fixes for intel perf - no shmem padding, placeholder shader core count