From: Georgi Gerganov Date: Fri, 14 Jul 2023 12:02:12 +0000 (+0300) Subject: ggml : retire custom ggml_2d impl in favor of general (#352) X-Git-Tag: upstream/0.0.1642~1317 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=d7179d7769909c9608b5d01612271a8982c0f334;p=pkg%2Fggml%2Fsources%2Fggml ggml : retire custom ggml_2d impl in favor of general (#352) --- diff --git a/src/ggml.c b/src/ggml.c index e45f8ef8..f5821f1f 100644 --- a/src/ggml.c +++ b/src/ggml.c @@ -12992,12 +12992,13 @@ static void ggml_compute_forward_conv_1d( }; } -// ggml_compute_forward_conv_2d_sk_p0 +// ggml_compute_forward_conv_2d -static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( +static void ggml_compute_forward_conv_2d_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -13017,120 +13018,12 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( // size of the convolution row - the kernel size unrolled across all channels const int ew0 = nk0*nk1*ne02; - GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); - GGML_ASSERT(nb10 == sizeof(float)); - - if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) - memset(params->wdata, 0, params->wsize); - - // prepare source data (src1) - { - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - - for (int i13 = 0; i13 < ne13; i13++) { - for (int i12 = 0; i12 < ne12; i12++) { - const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12); - ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0); - - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - for (int ik1 = 0; ik1 < nk1; ik1++) { - for (int ik0 = 0; ik0 < nk0; ik0++) { - dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = - GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]); - } - } - } - } - } - } - } - - return; - } - - if (params->type == GGML_TASK_FINALIZE) { - return; - } - - // total patches in dst - const int np = ne2; - - // patches per thread - const int dp = (np + nth - 1)/nth; - - // patch range for this thread - const int ip0 = dp*ith; - const int ip1 = MIN(ip0 + dp, np); - - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - - for (int i3 = 0; i3 < ne3; i3++) { - for (int i2 = ip0; i2 < ip1; i2++) { - float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2); - - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0, - (ggml_fp16_t *) ((char *) src0->data + i2*nb03), - (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0); - } - } - } - } -} - -static void ggml_compute_forward_conv_2d_sk_p0( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - struct ggml_tensor * dst) { - switch (src0->type) { - case GGML_TYPE_F16: - { - ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst); - } break; - case GGML_TYPE_F32: - { - //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst); - GGML_ASSERT(false); - } break; - default: - { - GGML_ASSERT(false); - } break; - } -} -// ggml_compute_forward_conv_2d_any - -static void ggml_compute_forward_conv_2d_f16_f32( - const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, - struct ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F16); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); const int32_t s0 = ((const int32_t*)(opt0->data))[0]; const int32_t s1 = ((const int32_t*)(opt0->data))[1]; const int32_t p0 = ((const int32_t*)(opt0->data))[2]; const int32_t p1 = ((const int32_t*)(opt0->data))[3]; const int32_t d0 = ((const int32_t*)(opt0->data))[4]; const int32_t d1 = ((const int32_t*)(opt0->data))[5]; - GGML_TENSOR_BINARY_OP_LOCALS; - - const int ith = params->ith; - const int nth = params->nth; - - const int nk0 = ne00; - const int nk1 = ne01; - - const int ew0 = nk0*nk1*ne02; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); @@ -13150,12 +13043,12 @@ static void ggml_compute_forward_conv_2d_f16_f32( for (int i0 = 0; i0 < ne0; i0++) { for (int ik1 = 0; ik1 < nk1; ik1++) { for (int ik0 = 0; ik0 < nk0; ik0++) { - const int idx1 = i1*s1 + ik1*d1 - p1; const int idx0 = i0*s0 + ik0*d0 - p0; - + const int idx1 = i1*s1 + ik1*d1 - p1; + if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) { dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = - GGML_FP32_TO_FP16(src[idx1 * ne10 + idx0]); + GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]); } } } @@ -13183,27 +13076,28 @@ static void ggml_compute_forward_conv_2d_f16_f32( ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i2 = ip0; i2 < ip1; i2++) { - float * dst_data = (float *)((char *) dst->data + i2*nb2); + for (int i3 = 0; i3 < ne3; i3++) { + for (int i2 = ip0; i2 < ip1; i2++) { + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2); - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0, - (ggml_fp16_t *) ((char *) src0->data + i2*nb03), - (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0); + for (int i1 = 0; i1 < ne1; ++i1) { + for (int i0 = 0; i0 < ne0; ++i0) { + ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0, + (ggml_fp16_t *) ((char *) src0->data + i2*nb03), + (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0); + } } - } } } -static void ggml_compute_forward_conv_2d_any( +static void ggml_compute_forward_conv_2d( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * opt0, struct ggml_tensor * dst - ) { + ) { switch (src0->type) { case GGML_TYPE_F16: { @@ -13219,30 +13113,6 @@ static void ggml_compute_forward_conv_2d_any( GGML_ASSERT(false); } break; } - -} - -// ggml_compute_forward_conv_2d - -static void ggml_compute_forward_conv_2d( - const struct ggml_compute_params* params, - const struct ggml_tensor* src0, - const struct ggml_tensor* src1, - const struct ggml_tensor* opt0, - struct ggml_tensor* dst) { - const int32_t s0 = ((const int32_t*)(opt0->data))[0]; - const int32_t s1 = ((const int32_t*)(opt0->data))[1]; - const int32_t p0 = ((const int32_t*)(opt0->data))[2]; - const int32_t p1 = ((const int32_t*)(opt0->data))[3]; - const int32_t d0 = ((const int32_t*)(opt0->data))[4]; - const int32_t d1 = ((const int32_t*)(opt0->data))[5]; - - if (s0 == src0->ne[0] && s1 == src0->ne[1] && p0 == 0 && p1 == 0) { - ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst); - } - else { - ggml_compute_forward_conv_2d_any(params, src0, src1, opt0, dst); - }; } // ggml_compute_forward_pool_1d_sk_p0