From: Daniel Bevenius Date: Fri, 10 Jan 2025 12:16:16 +0000 (+0100) Subject: examples : add README.md to tts example [no ci] (#11155) X-Git-Tag: upstream/0.0.4488~28 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=ba8a1f9c5b675459c55a83e3f97f10df3a66c788;p=pkg%2Fggml%2Fsources%2Fllama.cpp examples : add README.md to tts example [no ci] (#11155) * examples : add README.md to tts example [no ci] * squash! examples : add README.md to tts example [no ci] Fix heading to be consistent with other examples, and add a quickstart section to README.md. * squash! examples : add README.md to tts example [no ci] Fix spelling mistake. --- diff --git a/examples/tts/README.md b/examples/tts/README.md new file mode 100644 index 00000000..b0d20111 --- /dev/null +++ b/examples/tts/README.md @@ -0,0 +1,80 @@ +# llama.cpp/example/tts +This example demonstrates the Text To Speech feature. It uses a +[model](https://www.outeai.com/blog/outetts-0.2-500m) from +[outeai](https://www.outeai.com/). + +## Quickstart +If you have built llama.cpp with `-DLLAMA_CURL=ON` you can simply run the +following command and the required models will be downloaded automatically: +```console +$ build/bin/llama-tts --tts-oute-default -p "Hello world" && aplay output.wav +``` +For details about the models and how to convert them to the required format +see the following sections. + +### Model conversion +Checkout or download the model that contains the LLM model: +```console +$ pushd models +$ git clone --branch main --single-branch --depth 1 https://huggingface.co/OuteAI/OuteTTS-0.2-500M +$ cd OuteTTS-0.2-500M && git lfs install && git lfs pull +$ popd +``` +Convert the model to .gguf format: +```console +(venv) python convert_hf_to_gguf.py models/OuteTTS-0.2-500M \ + --outfile models/outetts-0.2-0.5B-f16.gguf --outtype f16 +``` +The generated model will be `models/outetts-0.2-0.5B-f16.gguf`. + +We can optionally quantize this to Q8_0 using the following command: +```console +$ build/bin/llama-quantize models/outetts-0.2-0.5B-f16.gguf \ + models/outetts-0.2-0.5B-q8_0.gguf q8_0 +``` +The quantized model will be `models/outetts-0.2-0.5B-q8_0.gguf`. + +Next we do something simlar for the audio decoder. First download or checkout +the model for the voice decoder: +```console +$ pushd models +$ git clone --branch main --single-branch --depth 1 https://huggingface.co/novateur/WavTokenizer-large-speech-75token +$ cd WavTokenizer-large-speech-75token && git lfs install && git lfs pull +$ popd +``` +This model file is PyTorch checkpoint (.ckpt) and we first need to convert it to +huggingface format: +```console +(venv) python examples/tts/convert_pt_to_hf.py \ + models/WavTokenizer-large-speech-75token/wavtokenizer_large_speech_320_24k.ckpt +... +Model has been successfully converted and saved to models/WavTokenizer-large-speech-75token/model.safetensors +Metadata has been saved to models/WavTokenizer-large-speech-75token/index.json +Config has been saved to models/WavTokenizer-large-speech-75tokenconfig.json +``` +Then we can convert the huggingface format to gguf: +```console +(venv) python convert_hf_to_gguf.py models/WavTokenizer-large-speech-75token \ + --outfile models/wavtokenizer-large-75-f16.gguf --outtype f16 +... +INFO:hf-to-gguf:Model successfully exported to models/wavtokenizer-large-75-f16.gguf +``` + +### Running the example + +With both of the models generated, the LLM model and the voice decoder model, +we can run the example: +```console +$ build/bin/llama-tts -m ./models/outetts-0.2-0.5B-q8_0.gguf \ + -mv ./models/wavtokenizer-large-75-f16.gguf \ + -p "Hello world" +... +main: audio written to file 'output.wav' +``` +The output.wav file will contain the audio of the prompt. This can be heard +by playing the file with a media player. On Linux the following command will +play the audio: +```console +$ aplay output.wav +``` +