From: Jason Ni Date: Thu, 14 Aug 2025 11:17:51 +0000 (+0800) Subject: ggml: fix ggml_conv_1d_dw bug (#1323) X-Git-Tag: upstream/0.0.2446^0 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=b141fc226b68e4af383101c39da90b54ede98850;p=pkg%2Fggml%2Fsources%2Fggml ggml: fix ggml_conv_1d_dw bug (#1323) * ggml: fix ggml_conv_1d_dw bug * Fixed conv1d_dw weight tensor dimension. --- diff --git a/src/ggml.c b/src/ggml.c index 54961213..a4417f1a 100644 --- a/src/ggml.c +++ b/src/ggml.c @@ -4272,14 +4272,13 @@ struct ggml_tensor * ggml_conv_1d_dw( int s0, int p0, int d0) { - struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]); struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]); - struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); + struct ggml_tensor * im2col = ggml_im2col(ctx, a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a); - result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1); + result = ggml_reshape_3d(ctx, result, result->ne[0], result->ne[2], 1); return result; } diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 701807fc..7c28e344 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -300,6 +300,24 @@ if (NOT GGML_BACKEND_DL) add_test(NAME ${TEST_TARGET} COMMAND $) set_property(TEST ${TEST_TARGET} PROPERTY ENVIRONMENT "LLVM_PROFILE_FILE=${TEST_TARGET}.profraw") + # + # test-conv1d-dw-c1 + + set(TEST_TARGET test-conv1d-dw-c1) + add_executable(${TEST_TARGET} ${TEST_TARGET}.cpp) + target_link_libraries(${TEST_TARGET} PRIVATE ggml) + add_test(NAME ${TEST_TARGET} COMMAND $) + set_property(TEST ${TEST_TARGET} PROPERTY ENVIRONMENT "LLVM_PROFILE_FILE=${TEST_TARGET}.profraw") + + # + # test-conv1d-dw-c2 + + set(TEST_TARGET test-conv1d-dw-c2) + add_executable(${TEST_TARGET} ${TEST_TARGET}.cpp) + target_link_libraries(${TEST_TARGET} PRIVATE ggml) + add_test(NAME ${TEST_TARGET} COMMAND $) + set_property(TEST ${TEST_TARGET} PROPERTY ENVIRONMENT "LLVM_PROFILE_FILE=${TEST_TARGET}.profraw") + # # test-conv2d diff --git a/tests/test-conv1d-dw-c1.cpp b/tests/test-conv1d-dw-c1.cpp new file mode 100644 index 00000000..fd2d2437 --- /dev/null +++ b/tests/test-conv1d-dw-c1.cpp @@ -0,0 +1,243 @@ +#include "ggml.h" +#include "ggml-cpu.h" +#include "ggml-alloc.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include + +static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { + (void) level; + (void) user_data; + fputs(text, stderr); + fflush(stderr); +} + +struct test_model { + struct ggml_tensor * weight; + struct ggml_tensor * input; + ggml_backend_t backend = NULL; + ggml_backend_buffer_t buffer; + struct ggml_context * ctx; +}; + +void load_model(test_model & model, bool use_gpu = false) { + // create data + int K = 3, IC = 2, OC = 2; + int IL = 6, N = 1; + + // Initialize adata + float weight_data[6] = {10.0f, 20.0f, 30.0f, 0.1f, 0.2f, 0.3f}; + + // Convert adata to fp16 format + std::vector h_weight_data(K * IC); + ggml_fp32_to_fp16_row(weight_data, h_weight_data.data(), K * IC); + + // Initialize input data, 2 channels, 6 timesteps, 1 batch + float input_data[12] = { + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + }; + + size_t buffer_size = 0; + { + buffer_size += K * IC * ggml_type_size(GGML_TYPE_F16); // tensor weight + buffer_size += IL * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor input + buffer_size += 1024; // overhead + } + + printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); + printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f)); + + ggml_log_set(ggml_log_callback_default, nullptr); + + int num_tensors = 2; + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + + // initialize the backend +#ifdef GGML_USE_CUDA + if (use_gpu) { + fprintf(stderr, "%s: using CUDA backend\n", __func__); + model.backend = ggml_backend_cuda_init(0); + if (!model.backend) { + fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); + } + } +#endif + +#ifdef GGML_USE_METAL + if (use_gpu) { + fprintf(stderr, "%s: using Metal backend\n", __func__); + model.backend = ggml_backend_metal_init(); + if (!model.backend) { + fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); + } + } +#endif + + if(!model.backend) { + // fallback to CPU backend + model.backend = ggml_backend_cpu_init(); + } + + model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size); + + // create context + model.ctx = ggml_init(params); + + // create tensors + // A Pytorch grouped Conv1d weight parameter is of shape (out_channels, input_channels/groups, kernel_size) + model.weight = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F16, K, 1, IC); + model.input = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, IL, IC, N); + + // create a allocator + ggml_tallocr alloc = ggml_tallocr_new(model.buffer); + + // alloc memory + ggml_tallocr_alloc(&alloc, model.weight); + + // load data to buffer + if(ggml_backend_is_cpu(model.backend)) { + memcpy(model.weight->data, h_weight_data.data(), ggml_nbytes(model.weight)); + } else { + ggml_backend_tensor_set(model.weight, h_weight_data.data(), 0, ggml_nbytes(model.weight)); + } + + // alloc memory + ggml_tallocr_alloc(&alloc, model.input); + + if(ggml_backend_is_cpu(model.backend) +#ifdef GGML_USE_METAL + || ggml_backend_is_metal(model.backend) +#endif + ) { + memcpy(model.input->data, input_data, ggml_nbytes(model.input)); + } else { + ggml_backend_tensor_set(model.input, input_data, 0, ggml_nbytes(model.input)); + } +} + +struct ggml_cgraph * build_graph(const test_model& model) { + static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); + static std::vector buf(buf_size); + + struct ggml_init_params params0 = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ buf.data(), + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() + }; + + // create a temporally context to build the graph + struct ggml_context * ctx0 = ggml_init(params0); + + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + int s0 = 1; + int p0 = 1; + int d0 = 1; + + struct ggml_tensor* conv1d_dw_res = ggml_conv_1d_dw(ctx0, model.weight, model.input, s0, p0, d0); + ggml_set_name(conv1d_dw_res, "conv1d_dw_res"); + ggml_build_forward_expand(gf, conv1d_dw_res); + + // delete the temporally context used to build the graph + ggml_free(ctx0); + return gf; +} + +struct ggml_cgraph* compute_graph(const test_model & model, ggml_gallocr_t allocr) { + struct ggml_cgraph * gf = build_graph(model); + + // allocate tensors + ggml_gallocr_alloc_graph(allocr, gf); + int n_threads = 1; + + if (ggml_backend_is_cpu(model.backend)) { + ggml_backend_cpu_set_n_threads(model.backend, n_threads); + } + + ggml_backend_graph_compute(model.backend, gf); + + //ggml_graph_print(gf); + + return gf; +} + +int main(void) +{ + ggml_time_init(); + + test_model model; + load_model(model, true); + + ggml_gallocr_t allocr = NULL; + + { + allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); + + //create the worst case graph for memory usage estimation + struct ggml_cgraph * gf = build_graph(model); + + // compute the required memory + ggml_gallocr_reserve(allocr, gf); + size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0); + fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f); + } + + struct ggml_cgraph * gf_res = compute_graph(model, allocr); + + struct ggml_tensor * conv1d_dw_res = NULL; + + for(int i = 0; i < ggml_graph_n_nodes(gf_res); i++) { + if(strcmp(ggml_get_name(ggml_graph_node(gf_res, i)), "conv1d_dw_res") == 0) { + conv1d_dw_res = ggml_graph_node(gf_res, i); + } + } + + std::vector conv2d_data(ggml_nelements(conv1d_dw_res)); + + ggml_backend_tensor_get(conv1d_dw_res, conv2d_data.data(), 0, ggml_nbytes(conv1d_dw_res)); + + const int n_conv1d_dw_test = 12; + + float expected_conv1d_dw[n_conv1d_dw_test] = { + 50.0f, 60.0f, 60.0f, 60.0f, 60.0f, 30.0f, 0.50f, 0.60f, 0.60f, 0.60f, 0.60f, 0.30f + }; + + printf("\nPerforming test:\n"); + + bool passed = true; + passed = true; + for(int i = 0; i < n_conv1d_dw_test; i++) { + if(std::abs(conv2d_data[i] - expected_conv1d_dw[i]) > 1e-4) { + passed = false; + break; + } + } + + printf("ggml_conv1d (%d): %s\n", (int) ggml_nelements(conv1d_dw_res), passed && (ggml_nelements(conv1d_dw_res) == n_conv1d_dw_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m"); + ggml_free(model.ctx); + + ggml_backend_buffer_free(model.buffer); + ggml_backend_free(model.backend); + ggml_gallocr_free(allocr); + return 0; +} diff --git a/tests/test-conv1d-dw-c2.cpp b/tests/test-conv1d-dw-c2.cpp new file mode 100644 index 00000000..c7b9a0a7 --- /dev/null +++ b/tests/test-conv1d-dw-c2.cpp @@ -0,0 +1,243 @@ +#include "ggml.h" +#include "ggml-cpu.h" +#include "ggml-alloc.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include + +static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { + (void) level; + (void) user_data; + fputs(text, stderr); + fflush(stderr); +} + +struct test_model { + struct ggml_tensor * weight; + struct ggml_tensor * input; + ggml_backend_t backend = NULL; + ggml_backend_buffer_t buffer; + struct ggml_context * ctx; +}; + +void load_model(test_model & model, bool use_gpu = false) { + // create data + int K = 3, IC = 2, OC = 2; + int IL = 6, N = 1; + + // Initialize adata + float weight_data[6] = {10.0f, 20.0f, 30.0f, 0.1f, 0.2f, 0.3f}; + + // Convert adata to fp16 format + std::vector h_weight_data(K * IC); + ggml_fp32_to_fp16_row(weight_data, h_weight_data.data(), K * IC); + + // Initialize input data, 2 channels, 6 timesteps, 1 batch + float input_data[12] = { + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, + }; + + size_t buffer_size = 0; + { + buffer_size += K * IC * ggml_type_size(GGML_TYPE_F16); // tensor weight + buffer_size += IL * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor input + buffer_size += 1024; // overhead + } + + printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); + printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f)); + + ggml_log_set(ggml_log_callback_default, nullptr); + + int num_tensors = 2; + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + + // initialize the backend +#ifdef GGML_USE_CUDA + if (use_gpu) { + fprintf(stderr, "%s: using CUDA backend\n", __func__); + model.backend = ggml_backend_cuda_init(0); + if (!model.backend) { + fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); + } + } +#endif + +#ifdef GGML_USE_METAL + if (use_gpu) { + fprintf(stderr, "%s: using Metal backend\n", __func__); + model.backend = ggml_backend_metal_init(); + if (!model.backend) { + fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); + } + } +#endif + + if(!model.backend) { + // fallback to CPU backend + model.backend = ggml_backend_cpu_init(); + } + + model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size); + + // create context + model.ctx = ggml_init(params); + + // create tensors + // A Pytorch grouped Conv1d weight parameter is of shape (out_channels, input_channels/groups, kernel_size) + model.weight = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F16, K, 1, IC); + model.input = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, IL, IC, N); + + // create a allocator + ggml_tallocr alloc = ggml_tallocr_new(model.buffer); + + // alloc memory + ggml_tallocr_alloc(&alloc, model.weight); + + // load data to buffer + if(ggml_backend_is_cpu(model.backend)) { + memcpy(model.weight->data, h_weight_data.data(), ggml_nbytes(model.weight)); + } else { + ggml_backend_tensor_set(model.weight, h_weight_data.data(), 0, ggml_nbytes(model.weight)); + } + + // alloc memory + ggml_tallocr_alloc(&alloc, model.input); + + if(ggml_backend_is_cpu(model.backend) +#ifdef GGML_USE_METAL + || ggml_backend_is_metal(model.backend) +#endif + ) { + memcpy(model.input->data, input_data, ggml_nbytes(model.input)); + } else { + ggml_backend_tensor_set(model.input, input_data, 0, ggml_nbytes(model.input)); + } +} + +struct ggml_cgraph * build_graph(const test_model& model) { + static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); + static std::vector buf(buf_size); + + struct ggml_init_params params0 = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ buf.data(), + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() + }; + + // create a temporally context to build the graph + struct ggml_context * ctx0 = ggml_init(params0); + + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + int s0 = 3; + int p0 = 0; + int d0 = 1; + + struct ggml_tensor* conv1d_dw_res = ggml_conv_1d_dw(ctx0, model.weight, model.input, s0, p0, d0); + ggml_set_name(conv1d_dw_res, "conv1d_dw_res"); + ggml_build_forward_expand(gf, conv1d_dw_res); + + // delete the temporally context used to build the graph + ggml_free(ctx0); + return gf; +} + +struct ggml_cgraph* compute_graph(const test_model & model, ggml_gallocr_t allocr) { + struct ggml_cgraph * gf = build_graph(model); + + // allocate tensors + ggml_gallocr_alloc_graph(allocr, gf); + int n_threads = 1; + + if (ggml_backend_is_cpu(model.backend)) { + ggml_backend_cpu_set_n_threads(model.backend, n_threads); + } + + ggml_backend_graph_compute(model.backend, gf); + + //ggml_graph_print(gf); + + return gf; +} + +int main(void) +{ + ggml_time_init(); + + test_model model; + load_model(model, true); + + ggml_gallocr_t allocr = NULL; + + { + allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); + + //create the worst case graph for memory usage estimation + struct ggml_cgraph * gf = build_graph(model); + + // compute the required memory + ggml_gallocr_reserve(allocr, gf); + size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0); + fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f); + } + + struct ggml_cgraph * gf_res = compute_graph(model, allocr); + + struct ggml_tensor * conv1d_dw_res = NULL; + + for(int i = 0; i < ggml_graph_n_nodes(gf_res); i++) { + if(strcmp(ggml_get_name(ggml_graph_node(gf_res, i)), "conv1d_dw_res") == 0) { + conv1d_dw_res = ggml_graph_node(gf_res, i); + } + } + + std::vector conv2d_data(ggml_nelements(conv1d_dw_res)); + + ggml_backend_tensor_get(conv1d_dw_res, conv2d_data.data(), 0, ggml_nbytes(conv1d_dw_res)); + + const int n_conv1d_dw_test = 4; + + float expected_conv1d_dw[n_conv1d_dw_test] = { + 60.0f, 60.0f, 0.6f, 0.6f + }; + + printf("\nPerforming test:\n"); + + bool passed = true; + passed = true; + for(int i = 0; i < n_conv1d_dw_test; i++) { + if(std::abs(conv2d_data[i] - expected_conv1d_dw[i]) > 1e-4) { + passed = false; + break; + } + } + + printf("ggml_conv1d (%d): %s\n", (int) ggml_nelements(conv1d_dw_res), passed && (ggml_nelements(conv1d_dw_res) == n_conv1d_dw_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m"); + ggml_free(model.ctx); + + ggml_backend_buffer_free(model.buffer); + ggml_backend_free(model.backend); + ggml_gallocr_free(allocr); + return 0; +}