From: Aaron Teo Date: Mon, 18 Aug 2025 16:21:15 +0000 (+0300) Subject: ggml : initial zDNN backend (llama/14975) X-Git-Tag: upstream/0.0.2471~4 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=7f63c13408376e260b4a5cacc30585b988edb6a1;p=pkg%2Fggml%2Fsources%2Fggml ggml : initial zDNN backend (llama/14975) --- diff --git a/src/ggml-zdnn/CMakeLists.txt b/src/ggml-zdnn/CMakeLists.txt new file mode 100644 index 00000000..0a723ce4 --- /dev/null +++ b/src/ggml-zdnn/CMakeLists.txt @@ -0,0 +1,36 @@ +if (DEFINED ZDNN_ROOT) + message(STATUS "zdnn: using ZDNN_ROOT override: ${ZDNN_ROOT}") + set(ZDNN_HINT "${ZDNN_ROOT}") +else() + set(ZDNN_HINT "") +endif() + +find_path(ZDNN_INCLUDE + NAMES zdnn.h + HINTS ${ZDNN_HINT} /usr /usr/local + PATH_SUFFIXES include) +if (ZDNN_INCLUDE) + message(STATUS "zdnn: found include: ${ZDNN_INCLUDE}") +else() + message(FATAL_ERROR "zdnn: include directory not found, please set ZDNN_ROOT to the proper path if necessary") +endif() + +find_library(ZDNN_LIB + NAMES zdnn + HINTS ${ZDNN_HINT} /usr /usr/local + PATH_SUFFIXES lib lib64) +if (ZDNN_LIB) + message(STATUS "zdnn: found library: ${ZDNN_LIB}") +else() + message(FATAL_ERROR "zdnn: library not found, please set ZDNN_ROOT to the proper path if necessary") +endif() + +file(GLOB GGML_SOURCES_ZDNN "*.c" "*.cpp") +file(GLOB GGML_HEADERS_ZDNN "*.h" "*.hpp") + +ggml_add_backend_library(ggml-zdnn ${GGML_HEADERS_ZDNN} ${GGML_SOURCES_ZDNN}) +target_link_libraries(ggml-zdnn PRIVATE ${ZDNN_LIB}) +target_include_directories(ggml-zdnn PRIVATE ${ZDNN_INCLUDE}) +target_link_directories(ggml-zdnn PRIVATE ${ZDNN_LIB}) + +target_compile_definitions(ggml-zdnn PRIVATE GGML_USE_ZDNN) diff --git a/src/ggml-zdnn/ggml-zdnn-impl.h b/src/ggml-zdnn/ggml-zdnn-impl.h new file mode 100644 index 00000000..9dcb040f --- /dev/null +++ b/src/ggml-zdnn/ggml-zdnn-impl.h @@ -0,0 +1,97 @@ +#ifndef GGML_ZDNN_IMPL +#define GGML_ZDNN_IMPL + +#include "zdnn.h" +#include "ggml.h" +#include "ggml-zdnn.h" + +#include +#include +#include + +#define GGML_ZDNN_NAME "zDNN" +#define GGML_ZDNN_VERSION ZDNN_VERNUM + +#define vec_neg(a) (-(a)) // Vector Negate +#define vec_add(a, b) ((a) + (b)) // Vector Add +#define vec_sub(a, b) ((a) - (b)) // Vector Subtract +#define vec_mul(a, b) ((a) * (b)) // Vector Multiply +#define vec_div(a, b) ((a) / (b)) // Vector Divide +#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left +#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right +#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic +#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet +#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet + +#ifndef vec_and +#define vec_and(a, b) ((a) & (b)) // Vector AND +#endif + +#ifndef vec_or +#define vec_or(a, b) ((a) | (b)) // Vector OR +#endif + +#ifndef vec_xor +#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR +#endif + +typedef signed char char8x16_t __attribute__((vector_size(16))); +typedef unsigned char uchar8x16_t __attribute__((vector_size(16))); + +typedef int8_t int8x16_t __attribute__((vector_size(16))); +typedef int16_t int16x8_t __attribute__((vector_size(16))); +typedef int32_t int32x4_t __attribute__((vector_size(16))); +typedef uint8_t uint8x16_t __attribute__((vector_size(16))); +typedef uint16_t uint16x8_t __attribute__((vector_size(16))); +typedef uint32_t uint32x4_t __attribute__((vector_size(16))); + +typedef float float32x4_t __attribute__((vector_size(16))); +typedef double double64x2_t __attribute__((vector_size(16))); + +typedef signed long long long64x2_t __attribute__((vector_size(16))); +typedef unsigned long long ulong64x2_t __attribute__((vector_size(16))); + +#define ZDNN_CHECK(stmt) \ + do { \ + zdnn_status status = (stmt); \ + GGML_ASSERT(status == ZDNN_OK); \ + } while (0); + +struct ggml_backend_zdnn_device_context { + int zdnn_device; + int zdnn_device_ref_count; + + bool has_parmblkformat_0; + bool has_parmblkformat_1; + + size_t max_size; + + char name[128]; +}; + +struct ggml_backend_zdnn_context { + int device; + ggml_cgraph * gf; +}; + +struct ggml_backend_zdnn_buffer { + void * data; + size_t size; + + zdnn_tensor_desc pre_tfm_desc; + zdnn_tensor_desc tfm_desc; + zdnn_ztensor ztensor; + + char name[GGML_MAX_NAME]; +}; + +struct ggml_backend_zdnn_buffer_context { + void * all_data; + size_t all_size; + bool owned; + + int n_buffers; + std::vector> buffers; +}; + +#endif // GGML_ZDNN_IMPL diff --git a/src/ggml-zdnn/ggml-zdnn.cpp b/src/ggml-zdnn/ggml-zdnn.cpp new file mode 100644 index 00000000..7507a52a --- /dev/null +++ b/src/ggml-zdnn/ggml-zdnn.cpp @@ -0,0 +1,846 @@ +#include "zdnn.h" +#include "ggml-zdnn.h" +#include "ggml-zdnn-impl.h" + +#include "ggml-impl.h" +#include "ggml-backend-impl.h" + +#include +#include +#include +#include + +inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return FP32; + case GGML_TYPE_F16: + return FP16; + case GGML_TYPE_BF16: + return BFLOAT; + case GGML_TYPE_I8: + return INT8; + case GGML_TYPE_I32: + return INT32; + case GGML_TYPE_Q8_0: + return INT8; + default: + GGML_ABORT("%s: fatal: unable to determine zTensor data type", + __func__); + break; + } +} + +inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc, + zdnn_tensor_desc & tfm_desc, + zdnn_ztensor & ztensor, + const ggml_tensor * src, + const int64_t * ne, + const zdnn_data_layouts layout) { + zdnn_init_pre_transformed_desc( + layout, + ggml_zdnn_type_mapping(src->type), + &pre_tfm_desc, + ne[3], ne[2], ne[1], ne[0] + ); + + ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc)); + ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor)); +} + +inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor, + void * buffer) { + ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer)); +} + +inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) { + switch (tensor->op) { + case GGML_OP_MUL_MAT: + { + zdnn_init_pre_transformed_desc( + ZDNN_2D, + ggml_zdnn_type_mapping(tensor->type), + &buffer->pre_tfm_desc, + tensor->ne[1], tensor->ne[0] + ); + } break; + + default: + { + // For 4D tensors, GGML uses NCHW layout. However, because zDNN + // automatically transforms everything to NHWC, we will use it + // directly to avoid the performance penalty changing the + // layout and reshaping the tensor. + zdnn_init_pre_transformed_desc( + ZDNN_NHWC, + ggml_zdnn_type_mapping(tensor->type), + &buffer->pre_tfm_desc, + tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0] + ); + + // TODO: Consider adding a ggml check. + // TODO: If tensor = 4D, use ZDNN_NCHW by default. + // TODO: If tensor = 2D, use ZDNN_NHWC by default. + } break; + } + + ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc)); + ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor)); +} + +static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_TENSOR_BINARY_OP_LOCALS; + + const enum ggml_type type = src0->type; + + GGML_ASSERT(ne0 == ne01); + GGML_ASSERT(ne1 == ne11); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == ggml_type_size(type)); + GGML_ASSERT(nb10 == ggml_type_size(src1->type)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + const ggml_tensor * weights = src0; + const ggml_tensor * inputs = src1; + ggml_tensor * output = dst; + + ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra; + ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra; + ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra; + + zdnn_tensor_desc ptd_bias, td_bias; + zdnn_ztensor zt_bias; + + const int64_t weights_rows = ne01; + const int64_t weights_cols = ne00; + const int64_t inputs_rows = ne11; + const int64_t inputs_cols = ne10; + + assert(inputs_cols == weights_cols); + + const int64_t output_rows = ne1; + const int64_t output_cols = ne0; + + const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols }; + ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D); + + void * bias_data = (void *)calloc(ne0, ggml_element_size(output)); + if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data); + if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data); + ggml_zdnn_load_tensor(zt_bias, bias_data); + + // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", + // __func__, weights_extra->name, + // weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0], + // weights_extra->pre_tfm_desc.dim1, + // weights_extra->pre_tfm_desc.dim2, + // weights_extra->pre_tfm_desc.dim3, + // weights_extra->pre_tfm_desc.dim4); + + // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", + // __func__, inputs_extra->name, + // inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0], + // inputs_extra->pre_tfm_desc.dim1, + // inputs_extra->pre_tfm_desc.dim2, + // inputs_extra->pre_tfm_desc.dim3, + // inputs_extra->pre_tfm_desc.dim4); + + GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]"); + GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]"); + GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]"); + GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]"); + + ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias, + false, true, MATMUL_OP_ADDITION, &output_extra->ztensor)); + // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient. + ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data)); + + ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias)); + free(bias_data); +} + +static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + bool use_mul_mat_vec = + (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src0->ne[0] % 2 == 0 && src1->ne[1] == 1; + + bool use_mul_mat_vec_q = + ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + + bool use_mul_mat_q = + ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + + // debug helpers + // GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec); + // GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q); + // GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q); + // GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); + // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); + // GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); + // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); + // GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); + // GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); + + if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 + && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) + && src1->ne[2] * src1->ne[3] > 1) { + // general KQ + KQV multi-batch + GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__); + // ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst); + } else if (use_mul_mat_vec) { + GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__); + // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr); + } else if (use_mul_mat_vec_q) { + GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__); + // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1); + } else if (use_mul_mat_q) { + GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__); + // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1); + } else { + // GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__); + ggml_zdnn_mul_mat_op(ctx, src0, src1, dst); + } +} + +static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) { + switch (dst->op) { + case GGML_OP_MUL_MAT: + ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst); + break; + + default: + return false; + } + + return true; +} + +static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) { + ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context; + ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context; + + ctx->gf = gf; + for (int i = 0; i < gf->n_nodes; i++) { + ggml_tensor * node = gf->nodes[i]; + + if (ggml_is_empty(node) + || node->op == GGML_OP_NONE + || node->op == GGML_OP_RESHAPE + || node->op == GGML_OP_VIEW + || node->op == GGML_OP_PERMUTE + || node->op == GGML_OP_TRANSPOSE) { + continue; + } + + bool ok = ggml_zdnn_compute_forward(ctx, node); + if (!ok) { + GGML_LOG_ERROR("%s: unsupported op %s (%s)\n", + __func__, node->name, ggml_op_name(node->op)); + } + + GGML_ASSERT(ok); + } + + return GGML_STATUS_SUCCESS; +} + +static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) { + switch (op->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + return true; + + case GGML_OP_MUL_MAT: + { + const ggml_tensor * src0 = op->src[0]; + const ggml_tensor * src1 = op->src[1]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne0 = op->ne[0]; + const int64_t ne1 = op->ne[1]; + + const int64_t max_batch = ctx_dev->max_size; + + return ggml_is_matrix(src0) && + ggml_is_matrix(src1) && + ggml_is_contiguous(src0) && + ggml_is_contiguous(src1) && + src0->view_src == nullptr && src1->view_src == nullptr && + src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && + (ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch); + } break; + + default: + return false; + } +} + +//////////////////////////////////////////////////////////////////////////////// + +// +// globals +// + +// initialised in ggml_backend_zdnn_reg +static ggml_backend_reg g_ggml_backend_zdnn_reg; +static ggml_backend_device g_ggml_backend_zdnn_device; + +static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = { + /* .zdnn_device = */ 0, + /* .zdnn_device_ref_count = */ 0, + /* .has_parmblkformat_0 = */ false, + /* .has_parmblkformat_1 = */ false, + /* .max_size = */ 0, + /* .name = */ "", +}; + +static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) { + assert(ctx != NULL); + + if (ctx->zdnn_device == 0) { + ctx->zdnn_device = 1; + } + + if (ctx->zdnn_device >= 1) { + ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0); + ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1); + ctx->max_size = zdnn_get_nnpa_max_dim_idx_size(); + strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1); + } + + ctx->zdnn_device_ref_count++; + return ctx->zdnn_device; +} + +static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) { + assert(ctx != NULL); + assert(ctx->zdnn_device_ref_count > 0); + + ctx->zdnn_device_ref_count--; + if (ctx->zdnn_device_ref_count == 0) { + if (ctx->zdnn_device >= 0) { + ctx->zdnn_device = 0; + } + } +} + +static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) { + GGML_LOG_INFO("%s: allocating\n", __func__); + GGML_LOG_INFO("%s: found 1 device\n", __func__); + + #ifdef STATIC_LIB + zdnn_init(); + #endif + + ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context(); + ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; + + int device = 1; + GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name); + + ctx->device = device; + GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name); + GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false"); + GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false"); + + ctx->gf = nullptr; + + return ctx; +} + +static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) { + GGML_LOG_INFO("%s: deallocating\n", __func__); + delete ctx; +} + +// +// backend interface +// + +static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; + + for (int i = 0; i < ctx->n_buffers; i++) { + if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) { + ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor)); + } + } + + delete ctx; +} + +static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; + return ctx->all_data; +} + +static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + if (tensor->view_src != NULL) { + assert(tensor->view_src->buffer->buft == buffer->buft); + return GGML_STATUS_SUCCESS; + } + + ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; + + const int64_t tsize = ggml_nbytes(tensor); + int buffer_idx = ctx->n_buffers; + + std::unique_ptr zdnn_buffer = std::make_unique(); + zdnn_buffer->data = tensor->data; + zdnn_buffer->size = tsize; + strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1); + + ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor); + tensor->extra = zdnn_buffer.get(); + + ctx->buffers.push_back(std::move(zdnn_buffer)); + ctx->n_buffers++; + + // GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n", + // __func__, tensor->name, buffer_idx, tsize); + + return GGML_STATUS_SUCCESS; +} + +static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { + memset((char *)tensor->data + offset, value, size); + + GGML_UNUSED(buffer); +} + +static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + memcpy((char *)tensor->data + offset, data, size); + + GGML_UNUSED(buffer); +} + +static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + memcpy(data, (const char *)tensor->data + offset, size); + + GGML_UNUSED(buffer); +} + +static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; + + memset(ctx->all_data, value, ctx->all_size); +} + +static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = { + /* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer, + /* .get_base = */ ggml_backend_zdnn_buffer_get_base, + /* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor, + /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor, + /* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_zdnn_buffer_clear, + /* .reset = */ NULL, +}; + +// +// default buffer type +// + +static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + return GGML_ZDNN_NAME; + + GGML_UNUSED(buft); +} + +static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); + + const size_t size_page = sysconf(_SC_PAGESIZE); + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += size_page - (size_aligned % size_page); + } + + ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context; + + GGML_ASSERT(ctx_dev->zdnn_device >= 0); + int device = ctx_dev->zdnn_device; GGML_UNUSED(device); + + ctx->all_data = ggml_aligned_malloc(size_aligned); + ctx->all_size = size_aligned; + ctx->owned = true; + ctx->n_buffers = 1; + + if (ctx->all_data != NULL) { + std::unique_ptr zdnn_buffer = std::make_unique(); + zdnn_buffer->data = ctx->all_data; + zdnn_buffer->size = size_aligned; + ctx->buffers.push_back(std::move(zdnn_buffer)); + } + + if (size_aligned > 0 && (ctx->all_data == NULL)) { + GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n", + __func__, size_aligned / 1024.0 / 1024.0); + delete ctx; + return NULL; + } + + return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size); +} + +static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 256; + + GGML_UNUSED(buft); +} + +static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return true; + + GGML_UNUSED(buft); +} + +ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) { + static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = { + /* .iface = */ { + /* .get_name = */ ggml_backend_zdnn_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, + /* .get_max_size = */ NULL, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, + }, + /* .device = */ &g_ggml_backend_zdnn_device, + /* .context = */ NULL, + }; + + return &ggml_backend_buffer_type_zdnn; +} + +static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { + return GGML_ZDNN_NAME "_Mapped"; + + GGML_UNUSED(buft); +} + +static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) { + static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = { + /* .iface = */ { + /* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name, + /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, + /* .get_max_size = */ NULL, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, + }, + /* .device = */ &g_ggml_backend_zdnn_device, + /* .context = */ NULL, + }; + + return &ggml_backend_buffer_from_ptr_type_zdnn; +} + +// +// backend +// + +static const char * ggml_backend_zdnn_name(ggml_backend_t backend) { + return GGML_ZDNN_NAME; + + GGML_UNUSED(backend); +} + +static void ggml_backend_zdnn_free(ggml_backend_t backend) { + ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context; + + ggml_zdnn_free(ctx); + free(backend); +} + +static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + return ggml_zdnn_graph_compute(backend, cgraph); +} + +static ggml_backend_i ggml_backend_zdnn_i = { + /* .get_name = */ ggml_backend_zdnn_name, + /* .free = */ ggml_backend_zdnn_free, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ NULL, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_update = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_zdnn_graph_compute, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, +}; + +static ggml_guid_t ggml_backend_zdnn_guid(void) { + static const char * guid_str = "IBM-ZDNN-ACCELER"; + return reinterpret_cast((void *)guid_str); +} + +// TODO: remove in the future +ggml_backend_t ggml_backend_zdnn_init(void) { + ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0); + + ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); + if (ctx == NULL) { + GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); + return NULL; + } + + ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend)); + *backend = (ggml_backend) { + /* .guid = */ ggml_backend_zdnn_guid(), + /* .iface = */ ggml_backend_zdnn_i, + /* .device = */ dev, + /* .context = */ ctx, + }; + + return backend; +} + +bool ggml_backend_is_zdnn(ggml_backend_t backend) { + return backend != NULL && + ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid()); + + GGML_UNUSED(backend); +} + +// +// backend device +// + +static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) { + return GGML_ZDNN_NAME; + + GGML_UNUSED(dev); +} + +static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) { + return "IBM Z Neural Network Processing Assist (NNPA)"; +} + +static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { + *free = 0; + *total = 0; +} + +static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) { + return GGML_BACKEND_DEVICE_TYPE_ACCEL; + + GGML_UNUSED(dev); +} + +static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) { + props->name = ggml_backend_zdnn_device_get_name(dev); + props->description = ggml_backend_zdnn_device_get_description(dev); + props->type = ggml_backend_zdnn_device_get_type(dev); + ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total); + props->caps = (ggml_backend_dev_caps) { + /* .async = */ false, + /* .host_buffer = */ false, + /* .buffer_from_host_ptr = */ true, + /* .events = */ false, + }; +} + +static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) { + ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); + if (ctx == NULL) { + GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); + return NULL; + } + + ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend)); + *backend = (ggml_backend) { + /* .guid = */ ggml_backend_zdnn_guid(), + /* .iface = */ ggml_backend_zdnn_i, + /* .device = */ dev, + /* .context = */ ctx, + }; + + return backend; + + GGML_UNUSED(params); +} + +static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) { + return ggml_backend_zdnn_buffer_type(); + + GGML_UNUSED(dev); +} + +static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { + ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); + + ctx->all_data = ptr; + ctx->all_size = size; + ctx->owned = false; + ctx->n_buffers = 0; + + const size_t size_page = sysconf(_SC_PAGESIZE); + + // page-align the data ptr + { + const uintptr_t offs = (uintptr_t) ptr % size_page; + ptr = (void *)((char *)ptr - offs); + size += offs; + } + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += size_page - (size_aligned % size_page); + } + + ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; + + GGML_ASSERT(ctx_dev->zdnn_device >= 0); + int device = ctx_dev->zdnn_device; GGML_UNUSED(device); + + std::unique_ptr zdnn_buffer = std::make_unique(); + zdnn_buffer->data = ptr; + zdnn_buffer->size = size; + ctx->buffers.push_back(std::move(zdnn_buffer)); + + GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n", + __func__, size_aligned / 1024.0 / 1024.0); + + ++ctx->n_buffers; + + return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size); +} + +static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { + ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context; + + return ggml_zdnn_supports_op(ctx_dev, op); +} + +static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { + return + buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name || + buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name; + + GGML_UNUSED(dev); +} + +static ggml_backend_device_i ggml_backend_zdnn_device_i = { + /* .get_name = */ ggml_backend_zdnn_device_get_name, + /* .get_description = */ ggml_backend_zdnn_device_get_description, + /* .get_memory = */ ggml_backend_zdnn_device_get_memory, + /* .get_type = */ ggml_backend_zdnn_device_get_type, + /* .get_props = */ ggml_backend_zdnn_device_get_props, + /* .init_backend = */ ggml_backend_zdnn_device_init, + /* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type, + /* .get_host_buffer_type = */ NULL, + /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr, + /* .supports_op = */ ggml_backend_zdnn_device_supports_op, + /* .supports_buft = */ ggml_backend_zdnn_device_supports_buft, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_synchronize = */ NULL, +}; + +// +// backend registry +// + +static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) { + return GGML_ZDNN_NAME; + + GGML_UNUSED(reg); +} + +static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) { + if (!zdnn_is_nnpa_installed()) { + return 0; + } + return 1; + + GGML_UNUSED(reg); +} + +static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) { + GGML_ASSERT(index == 0); + + return &g_ggml_backend_zdnn_device; + + GGML_UNUSED(reg); + GGML_UNUSED(index); +} + +static ggml_backend_feature g_ggml_backend_zdnn_features[] = { + { "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" }, + { "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" }, + { "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" }, + { NULL, NULL }, +}; + +static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) { + return g_ggml_backend_zdnn_features; + + GGML_UNUSED(reg); +} + +static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) { + if (strcmp(name, "ggml_backend_get_features") == 0) { + return (void *) ggml_backend_zdnn_get_features; + } + + return NULL; + + GGML_UNUSED(reg); +} + +static ggml_backend_reg_i ggml_backend_zdnn_reg_i = { + /* .get_name = */ ggml_backend_zdnn_reg_get_name, + /* .get_device_count = */ ggml_backend_zdnn_reg_device_count, + /* .get_device = */ ggml_backend_zdnn_reg_device_get, + /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address, +}; + +static void ggml_zdnn_cleanup(void) { + ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main); +} + +// TODO: make thread-safe +ggml_backend_reg_t ggml_backend_zdnn_reg(void) { + ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main); + + // register cleanup callback + atexit(ggml_zdnn_cleanup); + + { + g_ggml_backend_zdnn_reg = (ggml_backend_reg) { + /* .api_version = */ GGML_ZDNN_VERSION, + /* .iface = */ ggml_backend_zdnn_reg_i, + /* .context = */ NULL, + }; + + g_ggml_backend_zdnn_device = (ggml_backend_device) { + /* .iface = */ ggml_backend_zdnn_device_i, + /* .reg = */ &g_ggml_backend_zdnn_reg, + /* .context = */ &g_ggml_ctx_dev_main, + }; + + return &g_ggml_backend_zdnn_reg; + } +} + +GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)