From: Daniel Bevenius Date: Wed, 3 Sep 2025 10:50:47 +0000 (+0200) Subject: model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765) X-Git-Tag: upstream/0.0.6527~161 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=40a751ea9a94364da73537b86502a808ebe1fc3a;p=pkg%2Fggml%2Fsources%2Fllama.cpp model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765) * model-conversion : remove hardcoded /bin/bash shebangs [no ci] This commit updates the bash scripts to use env instead of using hardcoded /bin/bash in the shebang line. The motivation for this is that some systems may have bash installed in a different location, and using /usr/bin/env bash ensures that the script will use the first bash interpreter found in the user's PATH, making the scripts more portable across different environments. * model-conversion : rename script to .py [no ci] This commit renames run-casual-gen-embeddings-org.sh to run-casual-gen-embeddings-org.py to reflect its Python nature. --- diff --git a/examples/model-conversion/Makefile b/examples/model-conversion/Makefile index 03b928af..ac7a4147 100644 --- a/examples/model-conversion/Makefile +++ b/examples/model-conversion/Makefile @@ -63,7 +63,7 @@ causal-verify-logits: causal-run-original-model causal-run-converted-model @MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH} causal-run-original-embeddings: - @./scripts/causal/run-casual-gen-embeddings-org.sh + @./scripts/causal/run-casual-gen-embeddings-org.py causal-run-converted-embeddings: @./scripts/causal/run-converted-model-embeddings-logits.sh diff --git a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh index 287158f6..c53c89d4 100755 --- a/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/convert-model.sh b/examples/model-conversion/scripts/causal/convert-model.sh index 9d950259..32ffe132 100755 --- a/examples/model-conversion/scripts/causal/convert-model.sh +++ b/examples/model-conversion/scripts/causal/convert-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py new file mode 100755 index 00000000..2fb54ab9 --- /dev/null +++ b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py @@ -0,0 +1,113 @@ +#!/usr/bin/env python3 + +import argparse +import os +import importlib +import sys +import torch +import numpy as np + +from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM +from pathlib import Path + +unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') + +parser = argparse.ArgumentParser(description='Process model with specified path') +parser.add_argument('--model-path', '-m', help='Path to the model') +args = parser.parse_args() + +model_path = os.environ.get('MODEL_PATH', args.model_path) +if model_path is None: + parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable") + +config = AutoConfig.from_pretrained(model_path) + +print("Model type: ", config.model_type) +print("Vocab size: ", config.vocab_size) +print("Hidden size: ", config.hidden_size) +print("Number of layers: ", config.num_hidden_layers) +print("BOS token id: ", config.bos_token_id) +print("EOS token id: ", config.eos_token_id) + +print("Loading model and tokenizer using AutoTokenizer:", model_path) +tokenizer = AutoTokenizer.from_pretrained(model_path) + +if unreleased_model_name: + model_name_lower = unreleased_model_name.lower() + unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" + class_name = f"{unreleased_model_name}ForCausalLM" + print(f"Importing unreleased model module: {unreleased_module_path}") + + try: + model_class = getattr(importlib.import_module(unreleased_module_path), class_name) + model = model_class.from_pretrained(model_path) + except (ImportError, AttributeError) as e: + print(f"Failed to import or load model: {e}") +else: + model = AutoModelForCausalLM.from_pretrained(model_path) +print(f"Model class: {type(model)}") +#print(f"Model file: {type(model).__module__}") + +model_name = os.path.basename(model_path) +print(f"Model name: {model_name}") + +prompt = "Hello world today" +input_ids = tokenizer(prompt, return_tensors="pt").input_ids +print(f"Input tokens: {input_ids}") +print(f"Input text: {repr(prompt)}") +print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") + +with torch.no_grad(): + outputs = model(input_ids, output_hidden_states=True) + + # Extract hidden states from the last layer + # outputs.hidden_states is a tuple of (num_layers + 1) tensors + # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size] + last_hidden_states = outputs.hidden_states[-1] + + # Get embeddings for all tokens + token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension + + print(f"Hidden states shape: {last_hidden_states.shape}") + print(f"Token embeddings shape: {token_embeddings.shape}") + print(f"Hidden dimension: {token_embeddings.shape[-1]}") + print(f"Number of tokens: {token_embeddings.shape[0]}") + + # Save raw token embeddings + data_dir = Path("data") + data_dir.mkdir(exist_ok=True) + bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin" + txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt" + + # Save all token embeddings as binary + print(token_embeddings) + token_embeddings.astype(np.float32).tofile(bin_filename) + + # Save as text for inspection + with open(txt_filename, "w") as f: + for i, embedding in enumerate(token_embeddings): + for j, val in enumerate(embedding): + f.write(f"{i} {j} {val:.6f}\n") + + # Print embeddings per token in the requested format + print("\nToken embeddings:") + tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) + for i, embedding in enumerate(token_embeddings): + # Format: show first few values, ..., then last few values + if len(embedding) > 10: + # Show first 3 and last 3 values with ... in between + first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3]) + last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:]) + print(f"embedding {i}: {first_vals} ... {last_vals}") + else: + # If embedding is short, show all values + vals = " ".join(f"{val:8.6f}" for val in embedding) + print(f"embedding {i}: {vals}") + + # Also show token info for reference + print(f"\nToken reference:") + for i, token in enumerate(tokens): + print(f" Token {i}: {repr(token)}") + + print(f"Saved bin logits to: {bin_filename}") + print(f"Saved txt logist to: {txt_filename}") diff --git a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh b/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh deleted file mode 100755 index 2fb54ab9..00000000 --- a/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.sh +++ /dev/null @@ -1,113 +0,0 @@ -#!/usr/bin/env python3 - -import argparse -import os -import importlib -import sys -import torch -import numpy as np - -from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM -from pathlib import Path - -unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') - -parser = argparse.ArgumentParser(description='Process model with specified path') -parser.add_argument('--model-path', '-m', help='Path to the model') -args = parser.parse_args() - -model_path = os.environ.get('MODEL_PATH', args.model_path) -if model_path is None: - parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable") - -config = AutoConfig.from_pretrained(model_path) - -print("Model type: ", config.model_type) -print("Vocab size: ", config.vocab_size) -print("Hidden size: ", config.hidden_size) -print("Number of layers: ", config.num_hidden_layers) -print("BOS token id: ", config.bos_token_id) -print("EOS token id: ", config.eos_token_id) - -print("Loading model and tokenizer using AutoTokenizer:", model_path) -tokenizer = AutoTokenizer.from_pretrained(model_path) - -if unreleased_model_name: - model_name_lower = unreleased_model_name.lower() - unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" - class_name = f"{unreleased_model_name}ForCausalLM" - print(f"Importing unreleased model module: {unreleased_module_path}") - - try: - model_class = getattr(importlib.import_module(unreleased_module_path), class_name) - model = model_class.from_pretrained(model_path) - except (ImportError, AttributeError) as e: - print(f"Failed to import or load model: {e}") -else: - model = AutoModelForCausalLM.from_pretrained(model_path) -print(f"Model class: {type(model)}") -#print(f"Model file: {type(model).__module__}") - -model_name = os.path.basename(model_path) -print(f"Model name: {model_name}") - -prompt = "Hello world today" -input_ids = tokenizer(prompt, return_tensors="pt").input_ids -print(f"Input tokens: {input_ids}") -print(f"Input text: {repr(prompt)}") -print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") - -with torch.no_grad(): - outputs = model(input_ids, output_hidden_states=True) - - # Extract hidden states from the last layer - # outputs.hidden_states is a tuple of (num_layers + 1) tensors - # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size] - last_hidden_states = outputs.hidden_states[-1] - - # Get embeddings for all tokens - token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension - - print(f"Hidden states shape: {last_hidden_states.shape}") - print(f"Token embeddings shape: {token_embeddings.shape}") - print(f"Hidden dimension: {token_embeddings.shape[-1]}") - print(f"Number of tokens: {token_embeddings.shape[0]}") - - # Save raw token embeddings - data_dir = Path("data") - data_dir.mkdir(exist_ok=True) - bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin" - txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt" - - # Save all token embeddings as binary - print(token_embeddings) - token_embeddings.astype(np.float32).tofile(bin_filename) - - # Save as text for inspection - with open(txt_filename, "w") as f: - for i, embedding in enumerate(token_embeddings): - for j, val in enumerate(embedding): - f.write(f"{i} {j} {val:.6f}\n") - - # Print embeddings per token in the requested format - print("\nToken embeddings:") - tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) - for i, embedding in enumerate(token_embeddings): - # Format: show first few values, ..., then last few values - if len(embedding) > 10: - # Show first 3 and last 3 values with ... in between - first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3]) - last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:]) - print(f"embedding {i}: {first_vals} ... {last_vals}") - else: - # If embedding is short, show all values - vals = " ".join(f"{val:8.6f}" for val in embedding) - print(f"embedding {i}: {vals}") - - # Also show token info for reference - print(f"\nToken reference:") - for i, token in enumerate(tokens): - print(f" Token {i}: {repr(token)}") - - print(f"Saved bin logits to: {bin_filename}") - print(f"Saved txt logist to: {txt_filename}") diff --git a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh index 64709f17..fa16a02c 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model-embeddings-logits.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/causal/run-converted-model.sh b/examples/model-conversion/scripts/causal/run-converted-model.sh index e2762729..f5f567d4 100755 --- a/examples/model-conversion/scripts/causal/run-converted-model.sh +++ b/examples/model-conversion/scripts/causal/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh index 35b5d719..1401dcb4 100755 --- a/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh +++ b/examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh @@ -1,4 +1,4 @@ -#/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/convert-model.sh b/examples/model-conversion/scripts/embedding/convert-model.sh index 0609e353..0929e424 100755 --- a/examples/model-conversion/scripts/embedding/convert-model.sh +++ b/examples/model-conversion/scripts/embedding/convert-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/embedding/run-converted-model.sh b/examples/model-conversion/scripts/embedding/run-converted-model.sh index 58960904..24b28106 100755 --- a/examples/model-conversion/scripts/embedding/run-converted-model.sh +++ b/examples/model-conversion/scripts/embedding/run-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/create-collection-add-model.sh b/examples/model-conversion/scripts/utils/create-collection-add-model.sh index 4809da6c..485001b5 100644 --- a/examples/model-conversion/scripts/utils/create-collection-add-model.sh +++ b/examples/model-conversion/scripts/utils/create-collection-add-model.sh @@ -1,4 +1,6 @@ +#!/usr/bin/env bash + COLLECTION_SLUG=$(python ./create_collection.py --return-slug) echo "Created collection: $COLLECTION_SLUG" diff --git a/examples/model-conversion/scripts/utils/curl-embedding-server.sh b/examples/model-conversion/scripts/utils/curl-embedding-server.sh index b6898665..7ed69e1e 100755 --- a/examples/model-conversion/scripts/utils/curl-embedding-server.sh +++ b/examples/model-conversion/scripts/utils/curl-embedding-server.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash curl --request POST \ --url http://localhost:8080/embedding \ --header "Content-Type: application/json" \ diff --git a/examples/model-conversion/scripts/utils/inspect-converted-model.sh b/examples/model-conversion/scripts/utils/inspect-converted-model.sh index e5b93245..32d84826 100755 --- a/examples/model-conversion/scripts/utils/inspect-converted-model.sh +++ b/examples/model-conversion/scripts/utils/inspect-converted-model.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash # First try command line argument, then environment variable, then file CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}" diff --git a/examples/model-conversion/scripts/utils/perplexity-gen.sh b/examples/model-conversion/scripts/utils/perplexity-gen.sh index 3db0b3fd..4885acba 100755 --- a/examples/model-conversion/scripts/utils/perplexity-gen.sh +++ b/examples/model-conversion/scripts/utils/perplexity-gen.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh index 69b3438f..a2545436 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run-simple.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run-simple.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/perplexity-run.sh b/examples/model-conversion/scripts/utils/perplexity-run.sh index 3bce7c84..68b38e66 100755 --- a/examples/model-conversion/scripts/utils/perplexity-run.sh +++ b/examples/model-conversion/scripts/utils/perplexity-run.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/quantize.sh b/examples/model-conversion/scripts/utils/quantize.sh index 90460aa6..c25c5c21 100755 --- a/examples/model-conversion/scripts/utils/quantize.sh +++ b/examples/model-conversion/scripts/utils/quantize.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e diff --git a/examples/model-conversion/scripts/utils/run-embedding-server.sh b/examples/model-conversion/scripts/utils/run-embedding-server.sh index 828fc470..d30b7659 100755 --- a/examples/model-conversion/scripts/utils/run-embedding-server.sh +++ b/examples/model-conversion/scripts/utils/run-embedding-server.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#!/usr/bin/env bash set -e #