From: Sigbjørn Skjæret Date: Wed, 18 Jun 2025 07:52:07 +0000 (+0200) Subject: convert : fix null head_dim AutoConfig regression (#14248) X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=3865cff4f5b84c16119590efd6ce537789a27715;p=pkg%2Fggml%2Fsources%2Fllama.cpp convert : fix null head_dim AutoConfig regression (#14248) --- diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 58e455ae..b754dd81 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -556,11 +556,8 @@ class TextModel(ModelBase): logger.info(f"gguf: experts used count = {n_experts_used}") if (head_dim := self.hparams.get("head_dim")) is not None: - # Workaround for incorrect AutoConfig value for DeepSeekV3 (is set correctly in DeepSeekV2Model class) - # https://github.com/huggingface/transformers/blob/19224c3642705c5b6988c9f5f4251f83323d05ae/src/transformers/models/deepseek_v3/configuration_deepseek_v3.py#L210 - if self.hparams.get("model_type") != "deepseek_v3": - self.gguf_writer.add_key_length(head_dim) - self.gguf_writer.add_value_length(head_dim) + self.gguf_writer.add_key_length(head_dim) + self.gguf_writer.add_value_length(head_dim) self.gguf_writer.add_file_type(self.ftype) logger.info(f"gguf: file type = {self.ftype}") @@ -1901,9 +1898,7 @@ class LlamaModel(TextModel): hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) - if "head_dim" in hparams: - rope_dim = hparams["head_dim"] - else: + if (rope_dim := hparams.get("head_dim")) is None: rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) @@ -1985,7 +1980,8 @@ class LlamaModel(TextModel): if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling.get("rope_type", '').lower() == "llama3": base = self.hparams.get("rope_theta", 10000.0) - dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) factor = rope_scaling.get("factor", 8.0) @@ -2321,9 +2317,7 @@ class DeciModel(TextModel): hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) - if "head_dim" in hparams: - rope_dim = hparams["head_dim"] - else: + if (rope_dim := hparams.get("head_dim")) is None: rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) @@ -2363,7 +2357,8 @@ class DeciModel(TextModel): if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling.get("rope_type", '').lower() == "llama3": base = self.hparams.get("rope_theta", 10000.0) - dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) factor = rope_scaling.get("factor", 8.0) @@ -3681,9 +3676,7 @@ class InternLM3Model(TextModel): hparams = self.hparams self.gguf_writer.add_vocab_size(hparams["vocab_size"]) - if "head_dim" in hparams: - rope_dim = hparams["head_dim"] - else: + if (rope_dim := hparams.get("head_dim")) is None: rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) @@ -5098,9 +5091,7 @@ class DeepseekModel(TextModel): def set_gguf_parameters(self): super().set_gguf_parameters() hparams = self.hparams - if "head_dim" in hparams: - rope_dim = hparams["head_dim"] - else: + if (rope_dim := hparams.get("head_dim")) is None: rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) @@ -5990,7 +5981,8 @@ class ExaoneModel(TextModel): if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): if rope_scaling.get("rope_type", '').lower() == "llama3": base = self.hparams.get("rope_theta", 10000.0) - dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) factor = rope_scaling.get("factor", 8.0) @@ -6102,7 +6094,8 @@ class BailingMoeModel(TextModel): def set_gguf_parameters(self): super().set_gguf_parameters() hparams = self.hparams - rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"] + if (rope_dim := hparams.get("head_dim")) is None: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] self.gguf_writer.add_rope_dimension_count(rope_dim) rope_scaling = self.hparams.get("rope_scaling") or {} @@ -6134,7 +6127,8 @@ class BailingMoeModel(TextModel): n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") n_embd = self.hparams["hidden_size"] - head_dim = self.hparams.get("head_dim") or n_embd // n_head + if (head_dim := self.hparams.get("head_dim")) is None: + head_dim = n_embd // n_head output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)