From: Johannes Gäßler Date: Mon, 25 Aug 2025 15:23:40 +0000 (+0200) Subject: CUDA: MoE helper in device code, better tile sizes (llama/15525) X-Git-Tag: v0.9.1~156 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=06034b3c24212e9eb85e90d2079dafb444a148d2;p=pkg%2Fggml%2Fsources%2Fggml CUDA: MoE helper in device code, better tile sizes (llama/15525) * CUDA: MoE helper in device code, better tile sizes * reduce superfluous CUDA blocks --- diff --git a/src/ggml-cuda/common.cuh b/src/ggml-cuda/common.cuh index 767ad83f..48de1649 100644 --- a/src/ggml-cuda/common.cuh +++ b/src/ggml-cuda/common.cuh @@ -420,16 +420,28 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { template static __device__ __forceinline__ int warp_reduce_all(int x) { -#ifdef GGML_USE_HIP + if (width == ggml_cuda_get_physical_warp_size()) { + return __all_sync(0xffffffff, x); + } else { #pragma unroll - for (int offset = width/2; offset > 0; offset >>= 1) { - x = x && __shfl_xor_sync(0xffffffff, x, offset, width); + for (int offset = width/2; offset > 0; offset >>= 1) { + x = __shfl_xor_sync(0xffffffff, x, offset, width) && x; + } + return x; + } +} + +template +static __device__ __forceinline__ int warp_reduce_any(int x) { + if (width == ggml_cuda_get_physical_warp_size()) { + return __any_sync(0xffffffff, x); + } else { +#pragma unroll + for (int offset = width/2; offset > 0; offset >>= 1) { + x = __shfl_xor_sync(0xffffffff, x, offset, width) || x; + } + return x; } - return x; -#else - static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented"); - return __all_sync(0xffffffff, x); -#endif // GGML_USE_HIP } template diff --git a/src/ggml-cuda/mmq.cu b/src/ggml-cuda/mmq.cu index 576032a0..714b23f9 100644 --- a/src/ggml-cuda/mmq.cu +++ b/src/ggml-cuda/mmq.cu @@ -3,6 +3,140 @@ #include +// To reduce shared memory use, store "it" and "iex_used" with 22/10 bits each. +struct mmq_ids_helper_store { + uint32_t data; + + __device__ mmq_ids_helper_store(const uint32_t it, const uint32_t iex_used) { + data = (it & 0x003FFFFF) | (iex_used << 22); + } + + __device__ uint32_t it() const { + return data & 0x003FFFFF; + } + + __device__ uint32_t iex_used() const { + return data >> 22; + } +}; +static_assert(sizeof(mmq_ids_helper_store) == 4, "unexpected size for mmq_ids_helper_store"); + +// Helper function for mul_mat_id, converts ids to a more convenient format. +// ids_src1 describes how to permute the flattened column indices of src1 in order to get a compact src1 tensor sorted by expert. +// ids_dst describes the same mapping but for the dst tensor. +// The upper and lower bounds for the ith expert in the compact src1 tensor are stored in expert_bounds[i:i+1]. +template +__launch_bounds__(ggml_cuda_get_physical_warp_size(), 1) +static __global__ void mmq_ids_helper( + const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds, + const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1) { + constexpr int warp_size = ggml_cuda_get_physical_warp_size(); + const int n_expert_used = n_expert_used_template == 0 ? n_expert_used_var : n_expert_used_template; + const int expert = blockIdx.x; + + extern __shared__ char data_mmq_ids_helper[]; + mmq_ids_helper_store * store = (mmq_ids_helper_store *) data_mmq_ids_helper; + + int nex_prev = 0; // Number of columns for experts with a lower index. + int it_compact = 0; // Running index for the compact slice of this expert. + + if constexpr (n_expert_used_template == 0) { + // Generic implementation: + for (int it = 0; it < n_tokens; ++it) { + int iex_used = -1; // The index at which the expert is used, if any. + for (int iex = threadIdx.x; iex < n_expert_used; iex += warp_size) { + const int expert_used = ids[it*si1 + iex]; + nex_prev += expert_used < expert; + if (expert_used == expert) { + iex_used = iex; + } + } + + if (iex_used != -1) { + store[it_compact] = mmq_ids_helper_store(it, iex_used); + } + + if (warp_reduce_any(iex_used != -1)) { + it_compact++; + } + } + } else { + // Implementation optimized for specific numbers of experts used: + static_assert(n_expert_used == 6 || warp_size % n_expert_used == 0, "bad n_expert_used"); + const int neu_padded = n_expert_used == 6 ? 8 : n_expert_used; // Padded to next higher power of 2. + for (int it0 = 0; it0 < n_tokens; it0 += warp_size/neu_padded) { + const int it = it0 + threadIdx.x / neu_padded; + + const int iex = threadIdx.x % neu_padded; // The index at which the expert is used, if any. + const int expert_used = (neu_padded == n_expert_used || iex < n_expert_used) && it < n_tokens ? + ids[it*si1 + iex] : INT_MAX; + const int iex_used = expert_used == expert ? iex : -1; + nex_prev += expert_used < expert; + + // Whether the threads at this token position have used the expert: + const int it_compact_add_self = warp_reduce_any(iex_used != -1); + + // Do a scan over threads at lower token positions in warp to get the correct index for writing data: + int it_compact_add_lower = 0; +#pragma unroll + for (int offset = neu_padded; offset < warp_size; offset += neu_padded) { + const int tmp = __shfl_up_sync(0xFFFFFFFF, it_compact_add_self, offset, warp_size); + if (threadIdx.x >= offset) { + it_compact_add_lower += tmp; + } + } + + if (iex_used != -1) { + store[it_compact + it_compact_add_lower] = mmq_ids_helper_store(it, iex_used); + } + + // The thread with the highest index in the warp always has the sum over the whole warp, use it to increment all threads: + it_compact += __shfl_sync(0xFFFFFFFF, it_compact_add_lower + it_compact_add_self, warp_size - 1, warp_size); + } + } + nex_prev = warp_reduce_sum(nex_prev); + + for (int itc = threadIdx.x; itc < it_compact; itc += warp_size) { + const mmq_ids_helper_store store_it = store[itc]; + const int it = store_it.it(); + const int iex_used = store_it.iex_used(); + ids_src1[nex_prev + itc] = it*sis1 + iex_used % nchannels_y; + ids_dst [nex_prev + itc] = it*n_expert_used + iex_used; + } + + if (threadIdx.x != 0) { + return; + } + + expert_bounds[expert] = nex_prev; + + if (expert < gridDim.x - 1) { + return; + } + + expert_bounds[gridDim.x] = nex_prev + it_compact; +} + +template +static void launch_mmq_ids_helper( + const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds, + const int n_experts, const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) { + GGML_ASSERT(n_tokens < (1 << 22) && "too few bits in mmq_ids_helper_store"); + GGML_ASSERT(n_expert_used_var < (1 << 10) && "too few bits in mmq_ids_helper_store"); + + const int id = ggml_cuda_get_device(); + const int warp_size = ggml_cuda_info().devices[id].warp_size; + const size_t smpbo = ggml_cuda_info().devices[id].smpbo; + CUDA_SET_SHARED_MEMORY_LIMIT(mmq_ids_helper, smpbo); + + const dim3 num_blocks(n_experts, 1, 1); + const dim3 block_size(warp_size, 1, 1); + const size_t nbytes_shared = n_tokens*sizeof(mmq_ids_helper_store); + GGML_ASSERT(nbytes_shared <= smpbo); + mmq_ids_helper<<>> + (ids, ids_src1, ids_dst, expert_bounds, n_tokens, n_expert_used_var, nchannels_y, si1, sis1); +} + static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { switch (args.type_x) { case GGML_TYPE_Q4_0: @@ -137,7 +271,7 @@ void ggml_cuda_mul_mat_q( ne00, ne01, ne1, s01, ne11, s1, ne02, ne12, s02, s12, s2, ne03, ne13, s03, s13, s3, - use_stream_k}; + use_stream_k, ne1}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); return; } @@ -148,53 +282,49 @@ void ggml_cuda_mul_mat_q( const int64_t n_expert_used = ids->ne[0]; const int64_t ne_get_rows = ne12 * n_expert_used; + GGML_ASSERT(ne1 == n_expert_used); - std::vector ids_host(ggml_nbytes(ids)); - std::vector ids_src1_host; - ids_src1_host.reserve(ne_get_rows); - std::vector ids_dst_host; - ids_dst_host.reserve(ne_get_rows); - std::vector tokens_per_expert_host(ne02); - std::vector expert_bounds_host(ne02 + 1); - ggml_cuda_pool_alloc ids_buf_dev(ctx.pool()); - - CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); - CUDA_CHECK(cudaStreamSynchronize(stream)); - - for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices - for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens - for (int64_t iex = 0; iex < n_expert_used; ++iex) { - const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]); - assert(expert_to_use >= 0 && expert_to_use < ne02); - if (expert_to_use == i02) { - ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11); - ids_dst_host.push_back(i12*ne1 + iex); - tokens_per_expert_host[i02]++; - break; - } - } - } - } + ggml_cuda_pool_alloc ids_src1(ctx.pool(), ne_get_rows); + ggml_cuda_pool_alloc ids_dst(ctx.pool(), ne_get_rows); + ggml_cuda_pool_alloc expert_bounds(ctx.pool(), ne02 + 1); - int32_t cumsum = 0; - for (int64_t i = 0; i < ne02; ++i) { - expert_bounds_host[i] = cumsum; - cumsum += tokens_per_expert_host[i]; + { + GGML_ASSERT(ids->nb[0] == ggml_element_size(ids)); + const int si1 = ids->nb[1] / ggml_element_size(ids); + const int sis1 = nb12 / nb11; + + switch (n_expert_used) { + case 2: + launch_mmq_ids_helper< 2> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 4: + launch_mmq_ids_helper< 4> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 6: + launch_mmq_ids_helper< 6> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 8: + launch_mmq_ids_helper< 8> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 16: + launch_mmq_ids_helper<16> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + case 32: + launch_mmq_ids_helper<32> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + default: + launch_mmq_ids_helper< 0> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(), + ne02, ne12, n_expert_used, ne11, si1, sis1, stream); + break; + } + CUDA_CHECK(cudaGetLastError()); } - expert_bounds_host[ne02] = cumsum; - - std::vector ids_buf_host; - ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size()); - ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end()); - ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end()); - ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end()); - ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device. - CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream)); - CUDA_CHECK(cudaStreamSynchronize(stream)); - - const int32_t * ids_src1_dev = ids_buf_dev.ptr; - const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size(); - const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size(); const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 + get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq); @@ -208,7 +338,7 @@ void ggml_cuda_mul_mat_q( const int64_t s11 = src1->nb[1] / ts_src1; const int64_t s12 = src1->nb[2] / ts_src1; const int64_t s13 = src1->nb[2] / ts_src1; - quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type, + quantize_mmq_q8_1_cuda(src1_d, ids_src1.get(), src1_q8_1.get(), src0->type, ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream); CUDA_CHECK(cudaGetLastError()); } @@ -218,11 +348,11 @@ void ggml_cuda_mul_mat_q( // Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid. const mmq_args args = { - src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d, + src0_d, src0->type, (const int *) src1_q8_1.get(), ids_dst.get(), expert_bounds.get(), dst_d, ne00, ne01, ne_get_rows, s01, ne_get_rows, s1, ne02, ne02, s02, s12, s2, ne03, ne13, s03, s13, s3, - use_stream_k}; + use_stream_k, ne12}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); } @@ -262,7 +392,7 @@ void ggml_cuda_op_mul_mat_q( ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, - use_stream_k}; + use_stream_k, src1_ncols}; ggml_cuda_mul_mat_q_switch_type(ctx, args, stream); diff --git a/src/ggml-cuda/mmq.cuh b/src/ggml-cuda/mmq.cuh index 650f7080..c9a07e82 100644 --- a/src/ggml-cuda/mmq.cuh +++ b/src/ggml-cuda/mmq.cuh @@ -3138,7 +3138,8 @@ static __global__ void mul_mat_q( const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst, const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, - const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { + const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, + const int ncols_max) { // Skip unused template specializations for faster compilation: if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) { @@ -3152,7 +3153,7 @@ static __global__ void mul_mat_q( constexpr int qk = ggml_cuda_type_traits::qk; constexpr int mmq_y = get_mmq_y_device(); - const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x + const int ntx = (ncols_max + mmq_x - 1) / mmq_x; // Number of tiles x const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y // Initialize the ids for writing back data with just the index. @@ -3376,7 +3377,8 @@ template static __global__ void mul_mat_q_stream_k_fixup( const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst, - const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) { + const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst, + const int ncols_max) { constexpr int mmq_y = get_mmq_y_device(); constexpr int qk = ggml_cuda_type_traits::qk; constexpr int blocks_per_iter = MMQ_ITER_K / qk; @@ -3387,7 +3389,7 @@ static __global__ void mul_mat_q_stream_k_fixup( float sum[mmq_x*mmq_y / (nwarps*warp_size)] = {0.0f}; - const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; + const int ntx = (ncols_max + mmq_x - 1) / mmq_x; const int nty = (nrows_x + mmq_y - 1) / mmq_y; const int bidx0 = blockIdx.x; @@ -3528,7 +3530,7 @@ struct mmq_args { int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst; int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst; int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst; - bool use_stream_k; + bool use_stream_k; int64_t ncols_max; }; template @@ -3558,7 +3560,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q), nbytes_shared); const int nty = (args.nrows_x + mmq_y - 1) / mmq_y; - const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x; + const int ntx = (args.ncols_max + mmq_x - 1) / mmq_x; const int ntzw = args.nchannels_y * args.nsamples_y; const dim3 block_nums_xy_tiling(nty, ntx, ntzw); @@ -3574,14 +3576,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); } return; } @@ -3601,7 +3605,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); if (!fixup_needed) { return; @@ -3609,14 +3614,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a mul_mat_q_stream_k_fixup<<>> (args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, - args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst); + args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst, + args.ncols_max); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst, channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst, - sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst); + sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst, + args.ncols_max); if (!fixup_needed) { return; @@ -3624,7 +3631,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a mul_mat_q_stream_k_fixup<<>> (args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst, - args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst); + args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst, + args.ncols_max); } } @@ -3649,7 +3657,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda continue; } - const int ntiles_x = (args.ncols_y + mmq_x - 1) / mmq_x; + const int ntiles_x = (args.ncols_max + mmq_x - 1) / mmq_x; if (ntiles_x < ntiles_x_best) { mmq_x_best = mmq_x; diff --git a/src/ggml-cuda/vendors/hip.h b/src/ggml-cuda/vendors/hip.h index 6e9c67ac..c6a33d5d 100644 --- a/src/ggml-cuda/vendors/hip.h +++ b/src/ggml-cuda/vendors/hip.h @@ -22,7 +22,10 @@ #define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite #define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }} #define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width) +#define __shfl_up_sync(mask, var, laneMask, width) __shfl_up(var, laneMask, width) #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width) +#define __all_sync(mask, var) __all(var) +#define __any_sync(mask, var) __any(var) #define cublasCreate hipblasCreate #define cublasDestroy hipblasDestroy #define cublasGemmEx hipblasGemmEx