From: Jeff Bolz Date: Thu, 21 Aug 2025 14:55:00 +0000 (-0500) Subject: vulkan: Reuse conversion results in prealloc_y (llama/15410) X-Git-Tag: upstream/1.8.0~228 X-Git-Url: https://git.djapps.eu/?a=commitdiff_plain;h=04d0f9a066029c8993c8706dc4d05f127bb5f73e;p=pkg%2Fggml%2Fsources%2Fwhisper.cpp vulkan: Reuse conversion results in prealloc_y (llama/15410) * vulkan: Reuse conversion results in prealloc_y Cache the pipeline and tensor that were most recently used to fill prealloc_y, and skip the conversion if the current pipeline/tensor match. * don't use shared pointer for prealloc_y_last_pipeline_used --- diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index c59a588b..a5bb1820 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -1193,6 +1193,10 @@ struct ggml_backend_vk_context { vk::Fence fence, almost_ready_fence; bool almost_ready_fence_pending {}; + // Cache most recent tensor that was converted into prealloc_y, and what pipeline it used to convert. + vk_pipeline_struct * prealloc_y_last_pipeline_used {}; + const ggml_tensor * prealloc_y_last_tensor_used {}; + vk_buffer buffer_pool[MAX_VK_BUFFERS]; vk_context_ref compute_ctx; @@ -5651,10 +5655,20 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { - ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } } if (quantize_y) { - ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13); + if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13); + ctx->prealloc_y_last_pipeline_used = to_q8_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } } uint32_t stride_batch_x = ne00*ne01; @@ -5829,7 +5843,12 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& } if (y_non_contig) { GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); - ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } } // For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride @@ -6259,7 +6278,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { - ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } } uint32_t stride_batch_x = ne00*ne01; @@ -6447,7 +6471,12 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte } if (y_non_contig) { GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne); - ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() || + ctx->prealloc_y_last_tensor_used != src1) { + ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); + ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get(); + ctx->prealloc_y_last_tensor_used = src1; + } } uint32_t stride_batch_y = ne10*ne11; @@ -6491,22 +6520,29 @@ static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx GGML_ASSERT(nei0 <= 4096); const uint32_t split_size = std::min(nei1, 4096u / nei0); - ggml_tensor src1_copy = *src1; - ggml_tensor src2_copy = *src2; - ggml_tensor dst_copy = *dst; + if (split_size == nei1) { + ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun); + } else { + ggml_tensor src1_copy = *src1; + ggml_tensor src2_copy = *src2; + ggml_tensor dst_copy = *dst; - for (uint32_t token_start = 0; token_start < nei1; token_start += split_size) { - const uint32_t n_tokens = std::min(split_size, nei1 - token_start); + for (uint32_t token_start = 0; token_start < nei1; token_start += split_size) { + const uint32_t n_tokens = std::min(split_size, nei1 - token_start); - src1_copy.view_offs = src1->view_offs + token_start * src1_copy.nb[2]; - src2_copy.view_offs = src2->view_offs + token_start * src2_copy.nb[1]; - dst_copy.view_offs = dst->view_offs + token_start * dst_copy.nb[2]; + src1_copy.view_offs = src1->view_offs + token_start * src1_copy.nb[2]; + src2_copy.view_offs = src2->view_offs + token_start * src2_copy.nb[1]; + dst_copy.view_offs = dst->view_offs + token_start * dst_copy.nb[2]; - src1_copy.ne[2] = n_tokens; - src2_copy.ne[1] = n_tokens; - dst_copy.ne[2] = n_tokens; + src1_copy.ne[2] = n_tokens; + src2_copy.ne[1] = n_tokens; + dst_copy.ne[2] = n_tokens; - ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, &src1_copy, &src2_copy, &dst_copy, dryrun); + ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, &src1_copy, &src2_copy, &dst_copy, dryrun); + // invalidate cached prealloc_y, can't cache based on the copy of the ggml_tensor + ctx->prealloc_y_last_pipeline_used = {}; + ctx->prealloc_y_last_tensor_used = nullptr; + } } } } @@ -10311,6 +10347,7 @@ static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) { ggml_vk_pool_free(ctx, buffer); } ctx->gc.temp_buffers.clear(); + ctx->prealloc_y_last_pipeline_used = {}; ggml_vk_command_pool_cleanup(ctx->device, ctx->compute_cmd_pool); ggml_vk_command_pool_cleanup(ctx->device, ctx->transfer_cmd_pool); @@ -10346,6 +10383,7 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) { ggml_vk_destroy_buffer(ctx->prealloc_x); ggml_vk_destroy_buffer(ctx->prealloc_y); ggml_vk_destroy_buffer(ctx->prealloc_split_k); + ctx->prealloc_y_last_pipeline_used = nullptr; for (auto& buffer : ctx->buffer_pool) { ggml_vk_destroy_buffer(buffer); @@ -10894,6 +10932,9 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, 0); } + ctx->prealloc_y_last_pipeline_used = nullptr; + ctx->prealloc_y_last_tensor_used = nullptr; + // Submit after enough work has accumulated, to overlap CPU cmdbuffer generation with GPU execution. // Estimate the amount of matmul work by looking at the weight matrix size, and submit every 100MB // (and scaled down based on model size, so smaller models submit earlier).