]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
readme : add some recent perplexity and bpw measurements to READMES, link for k-quant...
authorBarfingLemurs <redacted>
Wed, 27 Sep 2023 15:30:36 +0000 (11:30 -0400)
committerGitHub <redacted>
Wed, 27 Sep 2023 15:30:36 +0000 (18:30 +0300)
* Update README.md

* Update README.md

* Update README.md with k-quants bpw measurements

README.md
examples/perplexity/README.md
examples/quantize/README.md

index f41250147fbc5f5364e6014a1596a68e76a7d955..09c5b1b92ff2dd4f6e4d03b794100bde5c633b69 100644 (file)
--- a/README.md
+++ b/README.md
@@ -597,6 +597,11 @@ Several quantization methods are supported. They differ in the resulting model d
 |   13B | ms/tok @ 8th |      - |     73 |     82 |     98 |    105 |    128 |
 |   13B | bits/weight  |   16.0 |    4.5 |    5.0 |    5.5 |    6.0 |    8.5 |
 
+- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
+- recent k-quants improvements
+  - [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
+  - [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
+
 ### Perplexity (measuring model quality)
 
 You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
index eacfb17c67fb2e8a476d9bc58b84a34c9942b24c..50e1af0111dd64f915fc7be75bdd92258c2084dc 100644 (file)
@@ -1,3 +1,21 @@
 # perplexity
 
 TODO
+
+## Llama 2 70B Scorechart
+Quantization | Model size (GiB) | Perplexity | Delta to fp16
+-- | -- | -- | --
+Q4_0 | 36.20 | 3.5550 | 3.61%
+Q4_1 | 40.20 | 3.5125 | 2.37%
+Q5_0 | 44.20 | 3.4744 | 1.26%
+Q2_K | 27.27 | 3.7339 | 8.82%
+Q3_K_S | 27.86 | 3.7019 | 7.89%
+Q3_K_M | 30.83 | 3.5932 | 4.72%
+Q3_K_L | 33.67 | 3.5617 | 3.80%
+Q4_K_S | 36.39 | 3.4852 | 1.57%
+Q4_K_M | 38.54 | 3.4725 | 1.20%
+Q5_K_S | 44.20 | 3.4483 | 0.50%
+Q5_K_M | 45.41 | 3.4451 | 0.40%
+Q6_K | 52.70 | 3.4367 | 0.16%
+fp16 | 128.5 | 3.4313 | -
+
index f349e913e3d10dc84ca1e045048e92ede8a3d5d6..c8b9a27a0b04e47aed9706045d7539b4aff670f1 100644 (file)
@@ -1,3 +1,44 @@
 # quantize
 
 TODO
+
+## Llama 2 7B
+
+Quantization | Bits per Weight (BPW)
+-- | --
+Q2_K | 3.35
+Q3_K_S | 3.50
+Q3_K_M | 3.91
+Q3_K_L | 4.27
+Q4_K_S | 4.58
+Q4_K_M | 4.84
+Q5_K_S | 5.52
+Q5_K_M | 5.68
+Q6_K | 6.56
+
+## Llama 2 13B
+Quantization | Bits per Weight (BPW)
+-- | --
+Q2_K | 3.34
+Q3_K_S | 3.48
+Q3_K_M | 3.89
+Q3_K_L | 4.26
+Q4_K_S | 4.56
+Q4_K_M | 4.83
+Q5_K_S | 5.51
+Q5_K_M | 5.67
+Q6_K | 6.56
+
+# Llama 2 70B
+
+Quantization | Bits per Weight (BPW)
+-- | --
+Q2_K | 3.40
+Q3_K_S | 3.47
+Q3_K_M | 3.85
+Q3_K_L | 4.19
+Q4_K_S | 4.53
+Q4_K_M | 4.80
+Q5_K_S | 5.50
+Q5_K_M | 5.65
+Q6_K | 6.56