#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
+#include "ggml-cuda/conv-transpose-1d.cuh"
#include <algorithm>
#include <array>
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ ggml_cuda_op_conv_transpose_1d(ctx,dst);
+ break;
case GGML_OP_POOL_2D:
ggml_cuda_op_pool2d(ctx, dst);
break;
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ {
+ ggml_type src0_type = op->src[0]->type;
+ ggml_type src1_type = op->src[1]->type;
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
+ return true;
+ }
+ return false;
+ } break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
--- /dev/null
+#include "conv-transpose-1d.cuh"
+
+static __global__ void conv_transpose_1d_kernel(
+ const int s0, const int p0, const int d0, const int output_size,
+ const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
+ const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
+ const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
+ const float * src0, const float * src1, float * dst) {
+ int global_index = threadIdx.x + blockIdx.x * blockDim.x;
+ if (global_index >= output_size) {
+ return;
+ }
+
+ int out_index = global_index / dst_ne0;
+
+ float accumulator = 0;
+
+ for (int c = 0; c < src0_ne2; c++) {
+ int idx = global_index % dst_ne0;
+
+ int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0);
+ int input_offset = src1_ne0 * c;
+
+ for (int i = 0; i < src1_ne0; i++) {
+ if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) {
+ continue;
+ }
+ int weight_idx = idx - i*s0;
+
+ float kernel_weight = src0[kernel_offset + weight_idx];
+ float input_value = src1[input_offset+i];
+
+ accumulator += kernel_weight * input_value;
+ }
+ }
+ dst[global_index] = accumulator;
+}
+
+static void conv_transpose_1d_f32_f32_cuda(
+ const int s0, const int p0, const int d0, const int output_size,
+ const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
+ const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
+ const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
+ const float * src0, const float * src1, float * dst,
+ cudaStream_t stream) {
+
+ const int num_blocks = (output_size + CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE;
+ conv_transpose_1d_kernel<<<num_blocks,CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE, 0, stream>>>(
+ s0,p0,d0,output_size,
+ src0_ne0, src0_ne1, src0_ne2, src0_ne3,
+ src1_ne0, src1_ne1, src1_ne2, src1_ne3,
+ dst_ne0, dst_ne1, dst_ne2, dst_ne3,
+ src0,src1, dst);
+}
+
+void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+
+ const ggml_tensor * src1 = dst->src[1];
+ const float * src1_d = (const float *)src1->data;
+
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+
+ const int s0 = opts[0];
+ const int p0 = 0;//opts[3];
+ const int d0 = 1;//opts[4];
+
+ const int64_t kernel_size = ggml_nelements(src0);
+ const int64_t input_size = ggml_nelements(src1);
+ const int64_t output_size = ggml_nelements(dst);
+
+ conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size,
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+ src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
+ src0_d, src1_d, dst_d, stream);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE 256
+
+void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
}
};
+// GGML_OP_CONV_TRANSPOSE_1D
+struct test_conv_transpose_1d : public test_case {
+
+ const std::array<int64_t, 4> ne_input;
+ const std::array<int64_t, 4> ne_kernel;
+
+ // stride
+ const int s0;
+ // padding
+ const int p0;
+ // dilation
+ const int d0;
+
+ std::string vars() override {
+ return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
+ }
+
+ test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
+ std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
+ int s0 = 1, int p0 = 0, int d0 = 1)
+ : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
+ ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
+ ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
+ return out;
+ }
+};
+
// GGML_OP_IM2COL
struct test_im2col : public test_case {
const ggml_type type_input;
// padding
const int p0;
const int p1;
- // dilatation
+ // dilation
const int d0;
const int d1;
// mode
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
+ test_cases.emplace_back(new test_conv_transpose_1d());
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
+
+
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));