sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
-
-def bytes_to_unicode():
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- return dict(zip(bs, (chr(n) for n in cs)))
-
-
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
scores: list[float] = []
toktypes: list[int] = []
-tokenizer_json_file = dir_model / "tokenizer.json"
-if not tokenizer_json_file.is_file():
- print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
- sys.exit(1)
-
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
-with open(tokenizer_json_file, "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
-
print("gguf: get gpt2 tokenizer vocab")
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
+
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = (
- hparams["vocab_size"]
- if "vocab_size" in hparams
- else len(tokenizer_json["model"]["vocab"])
-)
-
-tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-byte_encoder = bytes_to_unicode()
-byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
- if i in reverse_vocab:
- text = reverse_vocab[i]
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode("utf-8"))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
-
- tokens.append(text)
- scores.append(0.0) # dymmy
- toktypes.append(gguf.TokenType.NORMAL) # dummy
+ tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
+ scores.append(0.0) # dummy
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
- llama_batch batch = llama_batch_init(params.n_ctx, 0);
+ llama_batch batch = llama_batch_init(n_ctx, 0);
int32_t n_total_prompt = 0;
int32_t n_total_gen = 0;
} break;
case GGML_OP_CONCAT:
{
+ const int64_t nb = ne00;
- int64_t nb = ne00;
[encoder setComputePipelineState:ctx->pipeline_concat];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
const int nth = MIN(1024, ne0);
+
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ADD:
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
- const int64_t n = ggml_nelements(dst)/4;
+ const int64_t n = ggml_nelements(dst);
+ GGML_ASSERT(n % 4 == 0);
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- const int64_t n = ggml_nelements(dst)/4;
+ const int64_t n = ggml_nelements(dst);
+ GGML_ASSERT(n % 4 == 0);
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_RELU:
{
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- const int64_t n = ggml_nelements(dst)/4;
+ const int64_t n = ggml_nelements(dst);
+ GGML_ASSERT(n % 4 == 0);
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
} break;
case GGML_OP_RMS_NORM:
{
+ GGML_ASSERT(ne00 % 4 == 0);
+
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
- device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
- device const float * x_scalar = (device const float *) x;
- float4 sumf=0;
- float all_sum=0;
+ device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
+ device const float * x_scalar = (device const float *) x;
+
+ float4 sumf = 0;
+ float all_sum = 0;
// parallel sum
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
}
threadgroup_barrier(mem_flags::mem_threadgroup);
+
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
}
}
if (tpitg == 0) {
- for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
+ for (int i = 4 * (ne00 / 4); i < ne00; i++) {
+ sum[0] += x_scalar[i];
+ }
sum[0] /= ne00;
}
y[i00] = x[i00] * scale;
}
if (tpitg == 0) {
- for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
+ for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
+ y_scalar[i00] = x_scalar[i00] * scale;
+ }
}
}
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
assert(n_past >= 0);
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
+ const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
+ const int64_t ne1 = src0->ne[1]; // seq_len_without_past
+ const int64_t ne2 = src0->ne[2]; // n_head -> this is k
+ //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
+ const int64_t n = ggml_nrows(src0);
+ const int64_t ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
+ const size_t nb0 = src0->nb[0];
+ const size_t nb1 = src0->nb[1];
+ const size_t nb2 = src0->nb[2];
//const int nb3 = src0->nb[3];
GGML_ASSERT(nb0 == sizeof(float));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
+ for (int64_t i = 0; i < ne0; i++) {
+ for (int64_t j = 0; j < ne1; j++) {
+ for (int64_t k = 0; k < ne2_ne3; k++) {
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
}
pdst[0] = i * m_k + src[0];
-
}
}
}
cache.cells.clear();
cache.cells.resize(n_ctx);
+ // TODO: this should be:
+ // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
+ // change it and test that it works
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
+ memset(cache.buf.data, 0, cache.buf.size);
struct ggml_init_params params;
params.mem_size = cache.buf.size;