--- /dev/null
+#include "ggml.h"
+#include "ggml-backend.h"
+#include "ggml-backend-impl.h"
+#include "ggml-kompute.h"
+
+// These are generated at build time by cmake custom command
+#include "shaderop_scale.h"
+#include "shaderop_scale_8.h"
+#include "shaderop_add.h"
+#include "shaderop_addrow.h"
+#include "shaderop_mul.h"
+#include "shaderop_silu.h"
+#include "shaderop_relu.h"
+#include "shaderop_gelu.h"
+#include "shaderop_softmax.h"
+#include "shaderop_norm.h"
+#include "shaderop_rmsnorm.h"
+#include "shaderop_diagmask.h"
+#include "shaderop_mul_mat_f16.h"
+#include "shaderop_mul_mat_q8_0.h"
+#include "shaderop_mul_mat_q4_0.h"
+#include "shaderop_mul_mat_q4_1.h"
+#include "shaderop_mul_mat_q6_k.h"
+#include "shaderop_mul_mat_mat_f32.h"
+#include "shaderop_getrows_f16.h"
+#include "shaderop_getrows_q4_0.h"
+#include "shaderop_getrows_q4_1.h"
+#include "shaderop_getrows_q6_k.h"
+#include "shaderop_rope_f16.h"
+#include "shaderop_rope_f32.h"
+#include "shaderop_cpy_f16_f16.h"
+#include "shaderop_cpy_f16_f32.h"
+#include "shaderop_cpy_f32_f16.h"
+#include "shaderop_cpy_f32_f32.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <iostream>
+#include <memory>
+#include <stdexcept>
+#include <string>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include <kompute/Kompute.hpp>
+#include <vulkan/vulkan.hpp>
+
+#ifdef __linux__
+#include <cstdlib> // for setenv
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QK_NL 16
+
+typedef ggml_fp16_t half;
+
+static std::string ggml_kompute_format_name(int device) {
+ return "Kompute" + std::to_string(device);
+}
+
+struct ggml_kompute_context {
+ int device;
+ std::string name;
+ std::shared_ptr<vk::DescriptorPool> pool;
+
+ ggml_kompute_context(int device)
+ : device(device), name(ggml_kompute_format_name(device)) {}
+};
+
+// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
+// and consolidate the init functions and simplify object lifetime management. As it currently stands,
+// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
+// is only created when a device is set and vulkan is explicitly turned on.
+static ggml_kompute_context *s_kompute_context = nullptr;
+
+class kompute_manager {
+ kp::Manager *s_mgr = nullptr;
+
+public:
+ kp::Manager *operator()() {
+ if (s_mgr && !s_mgr->hasInstance()) {
+ destroy();
+ }
+ if (!s_mgr) {
+ s_mgr = new kp::Manager;
+ }
+ return s_mgr;
+ }
+
+ void destroy() {
+ delete s_mgr;
+ s_mgr = nullptr;
+ }
+};
+
+static kompute_manager komputeManager;
+
+struct ggml_vk_memory {
+ void *data = nullptr;
+ size_t size = 0;
+ vk::DeviceMemory *primaryMemory = nullptr;
+ vk::Buffer *primaryBuffer = nullptr;
+ vk::DeviceMemory *stagingMemory = nullptr;
+ vk::Buffer *stagingBuffer = nullptr;
+};
+
+#ifdef __linux__
+__attribute__((constructor))
+static void enable_sam() {
+ setenv("RADV_PERFTEST", "sam", false);
+}
+#endif
+
+static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
+ vk::PhysicalDeviceFeatures availableFeatures;
+ physical_device.getFeatures(&availableFeatures);
+
+ if (!availableFeatures.shaderInt16)
+ return false;
+
+ vk::PhysicalDeviceVulkan11Features availableFeatures11;
+ vk::PhysicalDeviceVulkan12Features availableFeatures12;
+
+ availableFeatures11.pNext = &availableFeatures12;
+ availableFeatures12.pNext = nullptr;
+
+ vk::PhysicalDeviceFeatures2 features2;
+ features2.pNext = &availableFeatures11;
+
+ physical_device.getFeatures2(&features2);
+
+ if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
+ !availableFeatures11.storageBuffer16BitAccess) {
+ return false;
+ }
+
+ if (!availableFeatures12.storageBuffer8BitAccess ||
+ !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
+ !availableFeatures12.shaderFloat16 ||
+ !availableFeatures12.shaderInt8) {
+ return false;
+ }
+
+ return true;
+}
+
+static const char * ggml_vk_getVendorName(uint32_t vendorID) {
+ switch (vendorID) {
+ case 0x10DE:
+ return "nvidia";
+ case 0x1002:
+ return "amd";
+ case 0x8086:
+ return "intel";
+ default:
+ return "unknown";
+ }
+}
+
+static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
+ std::vector<ggml_vk_device> results;
+ if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
+ return results;
+
+ std::vector<vk::PhysicalDevice> physical_devices;
+ try {
+ physical_devices = komputeManager()->listDevices();
+ } catch (vk::SystemError & err) {
+ std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
+ return results;
+ }
+
+ uint32_t deviceCount = physical_devices.size();
+ if (deviceCount == 0)
+ return results;
+
+ std::unordered_map<std::string, size_t> count_by_name;
+
+ for (uint32_t i = 0; i < deviceCount; i++) {
+ const auto & physical_device = physical_devices[i];
+
+ VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
+ VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
+ const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
+ const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
+ if (major < 1 || minor < 2)
+ continue;
+
+ if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
+ continue;
+
+ size_t heapSize = 0;
+ for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
+ VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
+ if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
+ heapSize = heap.size;
+ break;
+ }
+ }
+
+ if (heapSize < memoryRequired)
+ continue;
+
+ auto ext_props = physical_device.enumerateDeviceExtensionProperties();
+ bool has_maintenance4 = false;
+
+ // Check if maintenance4 is supported
+ for (const auto & properties : ext_props) {
+ if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
+ has_maintenance4 = true;
+ }
+ }
+
+ vk::PhysicalDeviceSubgroupProperties subgroup_props;
+ vk::PhysicalDeviceProperties2 dev_props2;
+ vk::PhysicalDeviceMaintenance3Properties dev_props3;
+ vk::PhysicalDeviceMaintenance4Properties dev_props4;
+ dev_props2.pNext = &dev_props3;
+ dev_props3.pNext = &subgroup_props;
+ if (has_maintenance4) {
+ subgroup_props.pNext = &dev_props4;
+ }
+ physical_device.getProperties2(&dev_props2);
+
+ if (subgroup_props.subgroupSize < 32)
+ continue;
+
+ ggml_vk_device d;
+ d.index = i;
+ d.type = dev_props.deviceType;
+ d.heapSize = heapSize;
+ d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
+ d.subgroupSize = subgroup_props.subgroupSize;
+ d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
+
+ if (has_maintenance4) {
+ d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
+ } else {
+ d.maxAlloc = dev_props3.maxMemoryAllocationSize;
+ }
+
+ std::string name(dev_props.deviceName);
+ size_t n_idx = ++count_by_name[name];
+ if (n_idx > 1) {
+ name += " (" + std::to_string(n_idx) + ")";
+ }
+ d.name = strdup(name.c_str());
+
+ results.push_back(d);
+ }
+
+ std::stable_sort(results.begin(), results.end(),
+ [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
+ if (lhs.type != rhs.type) {
+ if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
+ if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
+
+ if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
+ if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
+ }
+ return lhs.heapSize < rhs.heapSize;
+ }
+ );
+
+ return results;
+}
+
+// public API returns a C-style array
+ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
+ auto devices = ggml_vk_available_devices_internal(memoryRequired);
+ *count = devices.size();
+ if (devices.empty()) {
+ return nullptr;
+ }
+
+ size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
+ auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
+ memcpy(arr, devices.data(), nbytes);
+ return arr;
+}
+
+static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
+ devices.erase(
+ std::remove_if(devices.begin(), devices.end(),
+ [&targetVendor](const ggml_vk_device& device) {
+ return device.vendor != targetVendor;
+ }),
+ devices.end()
+ );
+}
+
+static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
+ devices.erase(
+ std::remove_if(devices.begin(), devices.end(),
+ [&targetName](const ggml_vk_device& device) {
+ return device.name != targetName;
+ }),
+ devices.end()
+ );
+}
+
+static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
+ if (name.empty())
+ return false;
+
+ auto devices = ggml_vk_available_devices_internal(memoryRequired);
+ if (name == "amd" || name == "nvidia" || name == "intel") {
+ ggml_vk_filterByVendor(devices, name);
+ } else if (name != "gpu") {
+ ggml_vk_filterByName(devices, name);
+ }
+
+ if (devices.empty())
+ return false;
+
+ *device = devices.front();
+ return true;
+}
+
+bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
+ return ggml_vk_get_device(device, memoryRequired, std::string(name));
+}
+
+bool ggml_vk_has_vulkan() {
+ return komputeManager()->hasVulkan();
+}
+
+bool ggml_vk_has_device() {
+ return komputeManager()->hasDevice();
+}
+
+ggml_vk_device ggml_vk_current_device() {
+ if (!komputeManager()->hasDevice())
+ return ggml_vk_device();
+
+ auto devices = ggml_vk_available_devices_internal(0);
+ ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
+ GGML_ASSERT(!devices.empty());
+ return devices.front();
+}
+
+static
+void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
+ std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
+ vk::DescriptorPoolSize(
+ vk::DescriptorType::eStorageBuffer,
+ 3 * size // Descriptor count is number of possible tensors to pass into an algorithm
+ )
+ };
+
+ vk::DescriptorPoolCreateInfo descriptorPoolInfo(
+ vk::DescriptorPoolCreateFlags(),
+ size, // Max sets
+ static_cast<uint32_t>(descriptorPoolSizes.size()),
+ descriptorPoolSizes.data());
+
+ ctx->pool = std::make_shared<vk::DescriptorPool>();
+ vk::Result r = komputeManager()->device()->createDescriptorPool(
+ &descriptorPoolInfo, nullptr, ctx->pool.get());
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
+}
+
+static
+void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
+ if (ctx->pool) {
+ komputeManager()->device()->destroy(
+ *ctx->pool,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ ctx->pool = nullptr;
+ }
+}
+
+static
+vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
+ vk::BufferCreateInfo bufferCreateInfo;
+ bufferCreateInfo.size = size;
+ bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
+ vk::BufferUsageFlagBits::eTransferSrc |
+ vk::BufferUsageFlagBits::eTransferDst;
+ bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
+
+ vk::Buffer *vkBuffer = new vk::Buffer;
+ vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
+ return vkBuffer;
+}
+
+static
+vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
+
+ uint32_t memoryTypeIndex = -1;
+ bool memoryTypeIndexFound = false;
+ vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
+ for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
+ const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
+ const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
+ if (memoryHeap.size < size) {
+ continue;
+ }
+
+ if (requirements.memoryTypeBits & (1 << i)) {
+ if (((memoryProperties.memoryTypes[i]).propertyFlags &
+ flags) == flags) {
+ memoryTypeIndex = i;
+ memoryTypeIndexFound = true;
+ if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
+ *isHostVisible = true;
+ }
+ break;
+ }
+ }
+ }
+ if (!memoryTypeIndexFound) {
+ throw std::runtime_error(
+ "Memory type index for buffer creation not found");
+ }
+
+ vk::MemoryAllocateInfo allocInfo;
+ allocInfo.allocationSize = size;
+ allocInfo.memoryTypeIndex = memoryTypeIndex;
+ vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
+ vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
+ if (r != vk::Result::eSuccess) {
+ std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
+ throw std::runtime_error("Error allocating vulkan memory.");
+ }
+ return vkDeviceMemory;
+}
+
+static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
+ size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
+
+ // If offset is already aligned, return it directly
+ if (offset % minStorageBufferOffsetAlignment == 0) {
+ return offset;
+ }
+
+ // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
+ return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
+}
+
+static ggml_vk_memory ggml_vk_allocate(size_t size) {
+ ggml_vk_memory memory;
+ bool isHostVisible = false;
+ {
+ memory.primaryBuffer = ggml_vk_allocate_buffer(size);
+ vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
+ vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
+ memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+ komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
+ if (isHostVisible) {
+ vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error mapping memory" << vk::to_string(r);
+ }
+ }
+
+ if (!isHostVisible) {
+ memory.stagingBuffer = ggml_vk_allocate_buffer(size);
+ vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
+ vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
+ vk::MemoryPropertyFlagBits::eHostCoherent |
+ vk::MemoryPropertyFlagBits::eHostCached;
+ memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+ komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
+ vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+ if (r != vk::Result::eSuccess)
+ std::cerr << "Error mapping memory" << vk::to_string(r);
+ }
+
+ memory.size = size;
+ return memory;
+}
+
+static void ggml_vk_free_memory(ggml_vk_memory &memory)
+{
+ komputeManager()->device()->destroy(
+ *memory.primaryBuffer,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ if (memory.stagingBuffer) {
+ komputeManager()->device()->destroy(
+ *memory.stagingBuffer,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ }
+ komputeManager()->device()->freeMemory(
+ *memory.primaryMemory,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ if (memory.stagingMemory) {
+ komputeManager()->device()->freeMemory(
+ *memory.stagingMemory,
+ (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+ }
+}
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
+
+static
+ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
+ ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
+
+ // compatibility with ggml-backend
+ GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
+
+ ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
+
+ const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
+
+ GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
+
+ offset = uint64_t(ioffs);
+ return buf_ctx;
+}
+
+static
+const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
+ uint64_t originalOffset = 0;
+ auto * res = ggml_vk_find_tensor(t, originalOffset);
+ if (!res) {
+ static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+ return nullTensor;
+ }
+
+ // Create a tensor whose memory will be composed of our buffers at the correct offset
+ const size_t nelements = ggml_nelements(t);
+ size_t nbytes = ggml_nbytes(t);
+
+ size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
+ if (alignedOffset) {
+ *alignedOffset = originalOffset - vulkanOffset;
+ nbytes += *alignedOffset;
+ }
+
+ return komputeManager()->tensor(
+ t->data,
+ nelements,
+ nbytes, kp::Tensor::TensorDataTypes::eFloat,
+ res->primaryMemory, res->primaryBuffer,
+ res->stagingMemory, res->stagingBuffer,
+ vulkanOffset);
+}
+
+static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
+ if (size % sizeof(uint32_t) != 0) {
+ throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
+ }
+
+ const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
+ size_t count = size / sizeof(uint32_t);
+ return std::vector<uint32_t>(data_ptr, data_ptr + count);
+}
+
+inline static
+uint32_t safe_divide(uint32_t a, uint32_t b) {
+ if (b <= 1) {
+ return a;
+ }
+ if ((a % b) != 0) {
+ fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
+ GGML_ASSERT(!"safe_divide result would've had remainder");
+ }
+ return a / b;
+}
+
+static void ggml_vk_add(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+ int32_t ne0,
+ int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
+ kp::shader_data::op_add_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00;
+ int32_t nb00, nb01, nb02, nb03;
+ int32_t ne10, ne11, ne12, ne13;
+ int32_t nb10, nb11, nb12, nb13;
+ int32_t ne0;
+ int32_t nb0, nb1, nb2, nb3;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_addrow(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ uint32_t size, uint32_t row = 0) {
+
+ const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
+ kp::shader_data::op_addrow_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ uint32_t row;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ row
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+ int32_t ne0,
+ int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
+ kp::shader_data::op_mul_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00;
+ int32_t nb00, nb01, nb02, nb03;
+ int32_t ne10, ne11, ne12, ne13;
+ int32_t nb10, nb11, nb12, nb13;
+ int32_t ne0;
+ int32_t nb0, nb1, nb2, nb3;
+ } const pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_scale(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t size, float scale) {
+ const static auto spirv_1 = getSpirvShader(
+ kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
+ );
+ const static auto spirv_8 = getSpirvShader(
+ kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
+ );
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ float scale;
+ } const pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ scale
+ };
+
+ const auto * spirv = &spirv_1;
+ std::string name(__func__);
+ if (size % 8 == 0) {
+ size /= 8;
+ name += "_8";
+ spirv = &spirv_8;
+ }
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_xxlu(
+ const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t size
+) {
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ } const pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_silu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
+ kp::shader_data::op_silu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_relu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
+ kp::shader_data::op_relu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_gelu(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
+ kp::shader_data::op_gelu_comp_spv_len);
+
+ ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_soft_max(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
+ float scale
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
+ kp::shader_data::op_softmax_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ float scale;
+ int32_t mask;
+ } pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ scale,
+ bool(inB)
+ };
+
+ auto & inB_ = inB ? inB : inA;
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
+ const uint32_t local_x = 32;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB_, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_norm_(
+ const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ int32_t ne00, int32_t nb01,
+ int32_t nrows, float epsilon
+) {
+ GGML_ASSERT(nb01%sizeof(float) == 0);
+ GGML_ASSERT(ne00%sizeof(float) == 0);
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ uint32_t ne00, nb01;
+ float eps;
+ } pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ (uint32_t)ne00, (uint32_t)nb01, epsilon
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({(uint32_t)nrows});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_norm(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
+ kp::shader_data::op_norm_comp_spv_len);
+
+ ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_rms_norm(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
+ kp::shader_data::op_rmsnorm_comp_spv_len);
+
+ ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ uint32_t n_past,
+ int32_t ne00, int32_t ne01, int32_t ne02) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
+ kp::shader_data::op_diagmask_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ uint32_t n_past;
+ int32_t ne00, ne01;
+ } pushConsts {
+ safe_divide(inOff, 4), safe_divide(outOff, 4),
+ n_past,
+ ne00, ne01
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_f16(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ uint32_t nb10, uint32_t nb11, uint32_t nb12,
+ int32_t ne0, int32_t ne1,
+ uint32_t r2, uint32_t r3
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
+ kp::shader_data::op_mul_mat_f16_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ uint32_t nb00, nb01, nb02;
+ int32_t ne10, ne11, ne12;
+ uint32_t nb10, nb11, nb12;
+ int32_t ne0, ne1;
+ uint32_t r2, r3;
+ } pushConsts {
+ safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ nb00, nb01, nb02,
+ ne10, ne11, ne12,
+ nb10, nb11, nb12,
+ ne0, ne1,
+ r2, r3
+ };
+
+ const unsigned ny = unsigned((ne11 + 4 - 1)/4);
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ uint32_t nb01, uint32_t nb02,
+ int32_t ne11, int32_t ne12,
+ uint32_t nb11, uint32_t nb12,
+ uint32_t nb1, uint32_t nb2) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
+ kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02, ne11, ne12;
+ uint32_t nb01, nb02;
+ uint32_t nb11, nb12;
+ uint32_t nb1, nb2;
+ } pushConsts {
+ safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02, ne11, ne12,
+ nb01, nb02, nb11, nb12,
+ nb1, nb2
+ };
+
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
+ {inA, inB, out}, spirv,
+ {unsigned(ne01),
+ unsigned(ne11),
+ unsigned(std::max(ne12, ne02))
+ },
+ {local_x},
+ {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01),
+ unsigned(ne11),
+ unsigned(std::max(ne12, ne02)),
+ });
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_impl(
+ const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02,
+ int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+ int32_t ne0, int32_t ne1,
+ uint32_t r2, uint32_t r3
+) {
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne01, ne02;
+ int32_t ne10, ne12;
+ int32_t ne0, ne1;
+ uint32_t r2, r3;
+ } pushConsts {
+ safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne01, ne02,
+ ne10, ne12,
+ ne0, ne1,
+ r2, r3
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
+ kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_1(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
+ kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q8_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
+ kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
+
+ ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_mul_mat_q6_k(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
+ int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
+) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
+ kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, ne10, ne0, ne1, ne01, gqa;
+ } pushConsts {
+ inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, ne10, ne0, ne1, ne01, ne12/ne02
+ };
+
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(__func__)) {
+ const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+ s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(__func__);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_get_rows(
+ const std::vector<uint32_t>& spirv,
+ const char * suffix,
+ unsigned element_size, unsigned qk,
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ int32_t ne00, int32_t nb01, int32_t nb1,
+ uint32_t size
+) {
+ GGML_ASSERT(nb01%element_size == 0);
+ GGML_ASSERT(nb1%sizeof(float) == 0);
+ if (qk) GGML_ASSERT(ne00%qk == 0);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t ne00, nb01, nb1;
+ } pushConsts {
+ safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+ ne00, nb01, nb1
+ };
+
+ auto name = std::string(__func__) + "_" + suffix;
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({size});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
+ kp::shader_data::op_getrows_f16_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_0(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
+ kp::shader_data::op_getrows_q4_0_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_1(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
+ kp::shader_data::op_getrows_q4_1_comp_spv_len);
+
+ ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q6_k(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
+ kp::shader_data::op_getrows_q6_k_comp_spv_len);
+ ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_rope(
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& inA,
+ const std::shared_ptr<kp::Tensor>& inB,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+ ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
+ float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
+ int32_t ne01, int32_t ne02, int32_t ne03,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+ int32_t ne0,
+ uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+ GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
+
+ static const auto spirv_f16 = getSpirvShader(
+ kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
+ );
+ static const auto spirv_f32 = getSpirvShader(
+ kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
+ );
+
+ int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
+
+ GGML_ASSERT(nb03 % type_size == 0);
+ GGML_ASSERT(nb02 % type_size == 0);
+ GGML_ASSERT(nb01 % type_size == 0);
+ GGML_ASSERT(nb00 % type_size == 0);
+ GGML_ASSERT(nb3 % type_size == 0);
+ GGML_ASSERT(nb2 % type_size == 0);
+ GGML_ASSERT(nb1 % type_size == 0);
+ GGML_ASSERT(nb0 % type_size == 0);
+
+ struct PushConstants {
+ uint32_t inAOff, inBOff, outOff;
+ int32_t n_dims, mode, n_orig_ctx;
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ uint32_t nb00, nb01, nb02, nb03;
+ int32_t ne0;
+ uint32_t nb0, nb1, nb2, nb3;
+ } pushConsts {
+ safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
+ n_dims, mode, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+ nb00, nb01, nb02, nb03,
+ ne0,
+ nb0, nb1, nb2, nb3
+ };
+
+ auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name)) {
+ s_algo = komputeManager()->algorithm<float, PushConstants>(
+ name, s_kompute_context->pool.get(), {inA, inB, out},
+ src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
+ {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
+ );
+ } else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({inA, inB, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_cpy(
+ const std::vector<uint32_t>& spirv,
+ uint32_t in_element_size, uint32_t out_element_size,
+ kp::Sequence& seq,
+ const std::shared_ptr<kp::Tensor>& in,
+ const std::shared_ptr<kp::Tensor>& out,
+ uint32_t inOff, uint32_t outOff,
+ int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+ uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+ int32_t ne0, int32_t ne1, int32_t ne2,
+ uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+ struct PushConstants {
+ uint32_t inOff, outOff;
+ int32_t ne00, ne01, ne02;
+ uint32_t nb00, nb01, nb02, nb03;
+ int32_t ne0, ne1, ne2;
+ uint32_t nb0, nb1, nb2, nb3;
+ } pushConsts {
+ safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
+ ne00, ne01, ne02,
+ nb00, nb01, nb02, nb03,
+ ne0, ne1, ne2,
+ nb0, nb1, nb2, nb3
+ };
+
+ std::string name = std::string(__func__)
+ + "_i_" + std::to_string(in_element_size)
+ + "_o_" + std::to_string(out_element_size);
+ std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+ if (!komputeManager()->hasAlgorithm(name))
+ s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+ else {
+ s_algo = komputeManager()->getAlgorithm(name);
+ s_algo->setTensors({in, out});
+ s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+ s_algo->setPushConstants<PushConstants>({pushConsts});
+ s_algo->updateDescriptors(s_kompute_context->pool.get());
+ }
+ seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
+ kp::shader_data::op_cpy_f32_f16_comp_spv_len);
+ ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f32(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
+ kp::shader_data::op_cpy_f32_f32_comp_spv_len);
+ ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f16(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
+ kp::shader_data::op_cpy_f16_f16_comp_spv_len);
+ ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f32(Args&&... args) {
+ const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
+ kp::shader_data::op_cpy_f16_f32_comp_spv_len);
+ ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
+}
+
+static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
+ switch (op->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ break;
+ default:
+ return false;
+ }
+
+ switch (op->op) {
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(op)) {
+ case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_SILU:
+ return true;
+ default:
+ ;
+ }
+ break;
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_ADD:
+ case GGML_OP_MUL:
+ case GGML_OP_SCALE:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_NORM:
+ case GGML_OP_ROPE:
+ return true;
+ case GGML_OP_DUP:
+ case GGML_OP_CPY:
+ case GGML_OP_CONT:
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ break;
+ default:
+ return false;
+ }
+ switch (op->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ break;
+ default:
+ return false;
+ }
+ return true;
+ case GGML_OP_DIAG_MASK_INF:
+ return op->ne[3] == 1;
+ case GGML_OP_GET_ROWS:
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q6_K:
+ return op->ne[2] == 1 && op->ne[3] == 1;
+ default:
+ ;
+ }
+ return false;
+ case GGML_OP_MUL_MAT:
+ if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
+ return false;
+
+ switch (op->src[0]->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_Q6_K:
+ return op->ne[3] == 1;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ return true;
+ default:
+ ;
+ }
+ default:
+ ;
+ }
+ return false;
+}
+
+static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
+ const int n_seq = 8;
+
+ // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
+ // it to the size of the graph, but I think it can be made smaller?
+ ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
+
+ std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
+
+ for (auto& sequence : sequences) {
+ sequence = komputeManager()->sequence();
+ }
+ for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
+ const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
+
+ auto& seq = *sequences[seq_idx];
+
+ const int node_start = (seq_idx + 0) * n_nodes_per_seq;
+ const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
+
+ bool any_commands_recorded = false;
+
+ for (int i = node_start; i < node_end; ++i) {
+ struct ggml_tensor * src0 = gf->nodes[i]->src[0];
+ struct ggml_tensor * src1 = gf->nodes[i]->src[1];
+ struct ggml_tensor * dst = gf->nodes[i];
+ GGML_ASSERT(dst->data != nullptr);
+
+ switch (dst->op) {
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_PERMUTE:
+ continue; // noop -> next node
+ default:
+ break;
+ }
+
+ any_commands_recorded = true;
+
+ if (!ggml_vk_supports_op(dst)) {
+ fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
+ GGML_ASSERT(!"unsupported op");
+ }
+
+ const int32_t ne00 = src0 ? src0->ne[0] : 0;
+ const int32_t ne01 = src0 ? src0->ne[1] : 0;
+ const int32_t ne02 = src0 ? src0->ne[2] : 0;
+ const int32_t ne03 = src0 ? src0->ne[3] : 0;
+
+ const uint32_t nb00 = src0 ? src0->nb[0] : 0;
+ const uint32_t nb01 = src0 ? src0->nb[1] : 0;
+ const uint32_t nb02 = src0 ? src0->nb[2] : 0;
+ const uint32_t nb03 = src0 ? src0->nb[3] : 0;
+
+ const int32_t ne10 = src1 ? src1->ne[0] : 0;
+ const int32_t ne11 = src1 ? src1->ne[1] : 0;
+ const int32_t ne12 = src1 ? src1->ne[2] : 0;
+ const int32_t ne13 = src1 ? src1->ne[3] : 0;
+
+ const uint32_t nb10 = src1 ? src1->nb[0] : 0;
+ const uint32_t nb11 = src1 ? src1->nb[1] : 0;
+ const uint32_t nb12 = src1 ? src1->nb[2] : 0;
+ const uint32_t nb13 = src1 ? src1->nb[3] : 0;
+
+ const int32_t ne0 = dst ? dst->ne[0] : 0;
+ const int32_t ne1 = dst ? dst->ne[1] : 0;
+ const int32_t ne2 = dst ? dst->ne[2] : 0;
+// const int32_t ne3 = dst ? dst->ne[3] : 0;
+
+ const uint32_t nb0 = dst ? dst->nb[0] : 0;
+ const uint32_t nb1 = dst ? dst->nb[1] : 0;
+ const uint32_t nb2 = dst ? dst->nb[2] : 0;
+ const uint32_t nb3 = dst ? dst->nb[3] : 0;
+
+ const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
+ const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
+ const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
+
+ const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+ uint32_t off_src0 = 0;
+ uint32_t off_src1 = 0;
+ uint32_t off_dst = 0;
+ const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
+ const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
+ const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
+
+ switch (dst->op) {
+ case GGML_OP_ADD:
+ {
+ if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+ // src1 is a row
+ ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
+ } else {
+ ggml_vk_add(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne03,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ );
+ }
+ } break;
+ case GGML_OP_MUL:
+ {
+ ggml_vk_mul(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne03,
+ nb00, nb01, nb02, nb03,
+ ne10, ne11, ne12, ne13,
+ nb10, nb11, nb12, nb13,
+ ne0,
+ nb0, nb1, nb2, nb3
+ );
+ } break;
+ case GGML_OP_SCALE:
+ {
+ float scale; memcpy(&scale, dst->op_params, sizeof(float));
+
+ ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
+ } break;
+ case GGML_OP_UNARY:
+ {
+ int64_t n = ggml_nelements(dst);
+ GGML_ASSERT(n % 4 == 0);
+ switch (ggml_get_unary_op(gf->nodes[i])) {
+ case GGML_UNARY_OP_SILU:
+ {
+ ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+ } break;
+ case GGML_UNARY_OP_RELU:
+ {
+ ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+ } break;
+ case GGML_UNARY_OP_GELU:
+ {
+ GGML_ASSERT(n % 8 == 0);
+ ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
+ } break;
+ default:
+ {
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+ GGML_ASSERT(false);
+ }
+ }
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ float scale;
+ memcpy(&scale, dst->op_params, sizeof(float));
+ ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ const int n_past = ((int32_t *)(dst->op_params))[0];
+ ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
+ } break;
+ case GGML_OP_NORM:
+ {
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+ ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+ } break;
+ case GGML_OP_RMS_NORM:
+ {
+ GGML_ASSERT(ne00 % 4 == 0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+ ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ GGML_ASSERT(ne00 == ne10);
+
+ // TODO: assert that dim2 and dim3 are contiguous
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
+
+ const uint32_t r2 = ne12/ne02;
+ const uint32_t r3 = ne13/ne03;
+
+ if (src1t != GGML_TYPE_F32) {
+ fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+
+ if (ggml_is_transposed(src0) ||
+ ggml_is_transposed(src1)) {
+ fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+
+ switch (src0t) {
+ case GGML_TYPE_F32:
+ ggml_vk_mul_mat_mat_f32(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
+ );
+ break;
+ case GGML_TYPE_F16:
+ ggml_vk_mul_mat_f16(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
+ ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_vk_mul_mat_q8_0(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q4_0:
+ ggml_vk_mul_mat_q4_0(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_vk_mul_mat_q4_1(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+ );
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_vk_mul_mat_q6_k(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+ ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
+ );
+ break;
+ default: {
+ fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+ goto not_implemented;
+ }
+ }
+
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ if (src0t == GGML_TYPE_F16) {
+ ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q4_0) {
+ ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q4_1) {
+ ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else if (src0t == GGML_TYPE_Q6_K) {
+ ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+ } else {
+ fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
+ goto not_implemented;
+ }
+ } break;
+ case GGML_OP_ROPE:
+ {
+ GGML_ASSERT(ne10 == ne02);
+ GGML_ASSERT(src0t == dstt);
+ // const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
+ const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+ ggml_vk_rope(
+ seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+ ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
+ );
+ } break;
+ case GGML_OP_DUP:
+ case GGML_OP_CPY:
+ case GGML_OP_CONT:
+ {
+ switch (src0t) {
+ case GGML_TYPE_F32:
+ {
+ switch (dstt) {
+ case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ default: goto not_implemented;
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ switch (dstt) {
+ case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+ default: goto not_implemented;
+ } break;
+ default: goto not_implemented;
+ }
+ }
+ } break;
+ default: goto not_implemented;
+ }
+ continue;
+ not_implemented: {}
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+ //GGML_ASSERT(false);
+ }
+
+ // Evaluate sequence
+ if (any_commands_recorded) {
+ seq.evalAsync();
+ }
+ }
+
+ // Wait for all sequences to finish
+ for (auto& sequence : sequences) {
+ if (sequence->isRunning())
+ sequence->evalAwait();
+ }
+
+ ggml_vk_free_descriptor_pool(ctx);
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<half>::dataType()
+{
+ return TensorDataTypes::eFloat;
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<uint8_t>::dataType()
+{
+ return TensorDataTypes::eUnsignedInt;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// backend interface
+
+struct ggml_backend_kompute_buffer_type_context {
+ int device;
+ int device_ref = 0;
+ uint64_t buffer_alignment;
+ uint64_t max_alloc;
+ std::string name;
+
+ ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
+ : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
+};
+
+static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+ if (!ctx->device_ref) {
+ komputeManager()->initializeDevice(
+ ctx->device, {}, {
+ "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
+ "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
+ }
+ );
+ }
+
+ assert(ggml_vk_has_device());
+ ctx->device_ref++;
+}
+
+static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+ assert(ctx->device_ref > 0);
+
+ ctx->device_ref--;
+
+ if (!ctx->device_ref) {
+ komputeManager.destroy();
+ }
+}
+
+static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
+ return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ auto * memory = (ggml_vk_memory *)buffer->context;
+ if (ggml_vk_has_device()) {
+ ggml_vk_free_memory(*memory);
+ }
+ delete memory;
+}
+
+static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
+ return ((ggml_vk_memory *)buffer->context)->data;
+}
+
+static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ GGML_UNUSED(buffer);
+
+ const auto res = ggml_vk_get_tensor(tensor);
+ GGML_ASSERT(res);
+
+ memcpy((char *)tensor->data + offset, data, size);
+
+ komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
+}
+
+static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ GGML_UNUSED(buffer);
+
+ const auto res = ggml_vk_get_tensor(tensor);
+ GGML_ASSERT(res);
+
+ komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
+
+ memcpy(data, (const char *)tensor->data + offset, size);
+}
+
+static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ auto * memory = (ggml_vk_memory *)buffer->context;
+ memset(memory->data, value, buffer->size);
+
+ if (memory->stagingBuffer)
+ komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
+}
+
+static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
+ /* .get_name = */ ggml_backend_kompute_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_kompute_buffer_get_base,
+ /* .init_tensor = */ NULL,
+ /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_kompute_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+// default buffer type
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->name.c_str();
+}
+
+static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ ggml_backend_kompute_device_ref(buft);
+ auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
+ return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
+}
+
+static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->buffer_alignment;
+}
+
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+ auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+ return ctx->max_alloc;
+}
+
+static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+ GGML_UNUSED(buft);
+ return ggml_backend_is_kompute(backend);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
+ /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
+ /* .is_host = */ NULL,
+};
+
+ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
+ static std::vector<ggml_backend_buffer_type> bufts = []() {
+ std::vector<ggml_backend_buffer_type> vec;
+ auto devices = ggml_vk_available_devices_internal(0);
+ vec.reserve(devices.size());
+
+ for (const auto & dev : devices) {
+ vec.push_back({
+ /* .iface = */ ggml_backend_kompute_buffer_type_interface,
+ /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
+ });
+ }
+ return vec;
+ }();
+
+ auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
+ return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
+ });
+ return it < bufts.end() ? &*it : nullptr;
+}
+
+// backend
+
+static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_free(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+
+ assert(ctx == s_kompute_context);
+ s_kompute_context = nullptr;
+ if (ctx != nullptr) {
+ delete ctx;
+ }
+
+ delete backend;
+}
+
+static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ return ggml_backend_kompute_buffer_type(ctx->device);
+}
+
+static bool ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+ ggml_vk_graph_compute(ctx, cgraph);
+ return true;
+}
+
+static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ GGML_UNUSED(backend);
+ return ggml_vk_supports_op(op);
+}
+
+static struct ggml_backend_i kompute_backend_i = {
+ /* .get_name = */ ggml_backend_kompute_name,
+ /* .free = */ ggml_backend_kompute_free,
+ /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
+ /* .set_tensor_async = */ NULL,
+ /* .get_tensor_async = */ NULL,
+ /* .cpy_tensor_async = */ NULL,
+ /* .synchronize = */ NULL,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_kompute_graph_compute,
+ /* .supports_op = */ ggml_backend_kompute_supports_op,
+};
+
+ggml_backend_t ggml_backend_kompute_init(int device) {
+ GGML_ASSERT(s_kompute_context == nullptr);
+ s_kompute_context = new ggml_kompute_context(device);
+
+ ggml_backend_t kompute_backend = new ggml_backend {
+ /* .interface = */ kompute_backend_i,
+ /* .context = */ s_kompute_context,
+ };
+
+ return kompute_backend;
+}
+
+bool ggml_backend_is_kompute(ggml_backend_t backend) {
+ return backend && backend->iface.get_name == ggml_backend_kompute_name;
+}
+
+static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
+ GGML_UNUSED(params);
+ return ggml_backend_kompute_init(intptr_t(user_data));
+}
+
+extern "C" int ggml_backend_kompute_reg_devices();
+
+int ggml_backend_kompute_reg_devices() {
+ auto devices = ggml_vk_available_devices_internal(0);
+ for (const auto & device : devices) {
+ ggml_backend_register(
+ ggml_kompute_format_name(device.index).c_str(),
+ ggml_backend_reg_kompute_init,
+ ggml_backend_kompute_buffer_type(device.index),
+ reinterpret_cast<void *>(intptr_t(device.index))
+ );
+ }
+ return devices.size();
+}
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
fflush(stdout);
- // check if backends support op
+ // check if the backends support the ops
bool supported = true;
for (ggml_backend_t backend : {backend1, backend2}) {
- if (!ggml_backend_supports_op(backend, out)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (!ggml_backend_supports_op(backend, t)) {
+ printf("not supported [%s] ", ggml_backend_name(backend));
+ supported = false;
+ break;
+ }
}
}
if (!supported) {
ggml_tensor * out = ggml_unary(ctx, in, op);
return out;
}
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ // test extended range of values to check for NaNs in GELU
+ init_tensor_uniform(t, -150.f, 150.f);
+ }
+ }
};
// GGML_OP_GET_ROWS
struct test_soft_max : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
+ const float scale;
+ const bool mask;
std::string vars() override {
- return VARS_TO_STR2(type, ne);
+ return VARS_TO_STR4(type, ne, scale, mask);
}
test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10})
- : type(type), ne(ne) {}
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ float scale = 1.0f,
+ bool mask = false)
+ : type(type), ne(ne), scale(scale), mask(mask) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_soft_max(ctx, a);
+ ggml_tensor * b = nullptr;
+ if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); }
+ ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale);
return out;
}
};
}
};
+
+enum llm_norm_type {
+ LLM_NORM,
+ LLM_NORM_RMS,
+};
+
+struct llama_hparams {
+ uint32_t n_vocab;
+ uint32_t n_embd;
+ uint32_t n_head;
+ uint32_t n_head_kv;
+ static constexpr uint32_t n_layer = 1;
+ uint32_t n_rot;
+ uint32_t n_embd_head; // dimension of values (d_v)
+ uint32_t n_ff;
+
+ float f_norm_eps;
+ float f_norm_rms_eps;
+
+ // cparams
+ static constexpr uint32_t n_ctx = 512; // user-specified context size
+ static constexpr uint32_t n_orig_ctx = n_ctx;
+
+ // batch
+ int32_t n_tokens;
+
+ // llm_build_context
+ static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
+ static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
+
+ uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
+ return n_embd_head * n_head_kv;
+ }
+};
+
+// LLM base class
+struct test_llm : public test_case {
+ llama_hparams hp;
+
+protected:
+ test_llm(llama_hparams hp)
+ : hp(std::move(hp)) {
+ }
+
+public:
+ struct ggml_tensor * llm_build_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * cur,
+ struct ggml_tensor * mw,
+ struct ggml_tensor * mb,
+ llm_norm_type type) {
+ switch (type) {
+ case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
+ case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
+ }
+ cur = ggml_mul(ctx, cur, mw);
+ if (mb) {
+ cur = ggml_add(ctx, cur, mb);
+ }
+ return cur;
+ }
+
+ void llm_build_kv_store(
+ struct ggml_context * ctx,
+ struct ggml_tensor * k_l,
+ struct ggml_tensor * v_l,
+ struct ggml_tensor * k_cur,
+ struct ggml_tensor * v_cur) {
+ // compute the transposed [n_tokens, n_embd] V matrix
+ struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
+
+ struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
+ (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
+
+ struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
+ ( hp.n_ctx)*ggml_element_size(v_l),
+ (hp.kv_head)*ggml_element_size(v_l));
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_cpy(ctx, k_cur, k_cache_view);
+ ggml_cpy(ctx, v_cur_t, v_cache_view);
+ }
+
+ // if max_alibi_bias > 0 then apply ALiBi
+ struct ggml_tensor * llm_build_kqv(
+ struct ggml_context * ctx,
+ struct ggml_tensor * k_l,
+ struct ggml_tensor * v_l,
+ struct ggml_tensor * q_cur,
+ struct ggml_tensor * kq_mask,
+ float kq_scale) {
+ struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
+
+ struct ggml_tensor * k =
+ ggml_view_3d(ctx, k_l,
+ hp.n_embd_head, hp.n_kv, hp.n_head_kv,
+ ggml_row_size(k_l->type, hp.n_embd_gqa()),
+ ggml_row_size(k_l->type, hp.n_embd_head),
+ 0);
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
+
+ kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale);
+
+ // split cached v into n_head heads
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx, v_l,
+ hp.n_kv, hp.n_embd_head, hp.n_head_kv,
+ ggml_element_size(v_l)*hp.n_ctx,
+ ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
+ 0);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
+
+ struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
+
+ struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
+ cur = ggml_mul_mat(ctx, wo, cur);
+
+ return cur;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // pos
+ std::vector<int> data(hp.n_tokens);
+ for (int i = 0; i < hp.n_tokens; i++) {
+ data[i] = rand() % hp.n_ctx;
+ }
+ ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+
+// Llama
+struct test_llama : public test_llm {
+ static constexpr float freq_base = 10000.0f;
+ static constexpr float freq_scale = 1.0f;
+ static constexpr float ext_factor = 0.0f;
+ static constexpr float attn_factor = 1.0f;
+ static constexpr float beta_fast = 32.0f;
+ static constexpr float beta_slow = 1.0f;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "LLAMA";
+ }
+
+ std::string vars() override {
+ auto n_tokens = hp.n_tokens;
+ return VARS_TO_STR1(n_tokens);
+ }
+
+ double max_nmse_err() override {
+ return 2e-3;
+ }
+
+ test_llama(int n_tokens = 1)
+ : test_llm({
+ /*n_vocab =*/ 32000,
+ /*n_embd =*/ 3200,
+ /*n_head =*/ 32,
+ /*n_head_kv =*/ 32,
+ /*n_rot =*/ 100,
+ /*n_embd_head =*/ 100,
+ /*n_ff =*/ 8640,
+ /*f_norm_eps =*/ 0.f,
+ /*f_norm_rms_eps =*/ 1e-5f,
+ /*n_tokens =*/ n_tokens,
+ }) {
+ }
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
+
+ ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+ ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+
+ for (uint32_t il = 0; il < hp.n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
+
+ // self-attention
+ {
+ ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
+ ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
+ ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
+
+ Qcur = ggml_rope_custom(
+ ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
+ hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_custom(
+ ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
+ hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
+
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
+
+ // feed-forward network
+ ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
+
+ ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
+ ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
+ cur = ggml_mul_mat(ctx, ffn_gate, cur);
+ cur = ggml_silu(ctx, cur);
+ cur = ggml_mul(ctx, cur, tmp);
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
+
+ cur = ggml_add(ctx, cur, ffn_inp);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
+
+ // lm_head
+ ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
+ cur = ggml_mul_mat(ctx, output, cur);
+
+ return cur;
+ }
+};
+
+// Falcon
+struct test_falcon : public test_llm {
+ static constexpr float freq_base = 10000.0f;
+ static constexpr float freq_scale = 1.0f;
+ static constexpr float ext_factor = 0.0f;
+ static constexpr float attn_factor = 1.0f;
+ static constexpr float beta_fast = 32.0f;
+ static constexpr float beta_slow = 1.0f;
+
+ std::string op_desc(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ return "FALCON";
+ }
+
+ std::string vars() override {
+ auto n_tokens = hp.n_tokens;
+ return VARS_TO_STR1(n_tokens);
+ }
+
+ double max_nmse_err() override {
+ return 2e-3;
+ }
+
+ test_falcon(int n_tokens = 1)
+ : test_llm({
+ /*n_vocab =*/ 32000,
+ /*n_embd =*/ 3200,
+ /*n_head =*/ 50,
+ /*n_head_kv =*/ 1,
+ /*n_rot =*/ 64,
+ /*n_embd_head =*/ 64,
+ /*n_ff =*/ 8640,
+ /*f_norm_eps =*/ 1e-5f,
+ /*f_norm_rms_eps =*/ 0.f,
+ /*n_tokens =*/ n_tokens,
+ }) {
+ }
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
+
+ ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+ ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
+
+ for (uint32_t il = 0; il < hp.n_layer; ++il) {
+ // norm
+ ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
+
+ // self-attention
+ {
+ cur = attn_norm;
+
+ ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
+
+ cur = ggml_mul_mat(ctx, wqkv, cur);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
+
+ Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
+ Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
+
+ // using mode = 2 for neox mode
+ Qcur = ggml_rope_custom(
+ ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_custom(
+ ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
+
+ cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
+ }
+
+ struct ggml_tensor * ffn_inp = cur;
+
+ // feed forward
+ {
+ ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
+ ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
+ cur = attn_norm;
+ cur = ggml_mul_mat(ctx, ffn_up, cur);
+ cur = ggml_gelu(ctx, cur);
+ cur = ggml_mul_mat(ctx, ffn_down, cur);
+ }
+
+ cur = ggml_add(ctx, cur, ffn_inp);
+
+ cur = ggml_add(ctx, cur, inpL);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
+ cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
+
+ // lm_head
+ ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
+ cur = ggml_mul_mat(ctx, output, cur);
+
+ return cur;
+ }
+};
+
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
std::vector<std::unique_ptr<test_case>> test_cases;
std::default_random_engine rng(0);
exponent <<= 1;
}
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true));
+
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
#endif
+ // these tests are disabled to save execution time, but they can be handy for debugging
+#if 0
+ test_cases.emplace_back(new test_llama(1));
+ test_cases.emplace_back(new test_llama(2));
+ test_cases.emplace_back(new test_falcon(1));
+ test_cases.emplace_back(new test_falcon(2));
+#endif
+
// run tests
if (mode == MODE_TEST) {
ggml_backend_t backend_cpu = ggml_backend_cpu_init();