--- /dev/null
+build/
+build-debug/
+build-*/
+
+compile_commands.json
+
+.exrc
+.cache
+
+src/arm_neon.h
--- /dev/null
+cmake_minimum_required (VERSION 3.0)
+project(ggml VERSION 0.1.0)
+
+set(CMAKE_EXPORT_COMPILE_COMMANDS "on")
+set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
+set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
+
+if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
+ set(GGML_STANDALONE ON)
+ include(cmake/GitVars.cmake)
+ include(cmake/BuildTypes.cmake)
+else()
+ set(GGML_STANDALONE OFF)
+endif()
+
+# options
+
+option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
+option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
+
+option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
+option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
+option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
+
+option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
+option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
+
+# sanitizers
+
+if (GGML_SANITIZE_THREAD)
+ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
+endif()
+
+if (GGML_SANITIZE_ADDRESS)
+ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
+endif()
+
+if (GGML_SANITIZE_UNDEFINED)
+ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
+endif()
+
+#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
+#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
+
+# dependencies
+
+set(CMAKE_C_STANDARD 11)
+set(CMAKE_CXX_STANDARD 11)
+
+find_package(Threads REQUIRED)
+
+# main
+
+if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
+ set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
+ set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
+endif ()
+
+add_subdirectory(src)
+
+if (GGML_BUILD_TESTS)
+ enable_testing()
+ add_subdirectory(tests)
+endif ()
+
+if (GGML_BUILD_EXAMPLES)
+ add_subdirectory(examples)
+endif ()
--- /dev/null
+MIT License
+
+Copyright (c) 2022 Georgi Gerganov
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
--- /dev/null
+# ggml
+
+Tensor library in C for machine learning
+
+## Features
+
+- Automatic differentiation (WIP)
+- 16-bit float support
+- ADAM and L-BFGS optimizers
+- Optimized for Arm64 architectures (i.e. MacBook M1) via NEON intrinsics
+- On x86 architectures utilzes AVX intrinsics
+- No third-party dependencies
+- Zero memory allocations during runtime
+
+## Local GPT inference
+
+Using ggml you can run [GPT-2](examples/gpt-2) and [GPT-J](examples/gpt-j) inference locally on your computer without any additional software or hardware. You don't even need to install python or any other third-party library.
+
+The example programs are implemented in C++. They run entirely on the CPU.
+
+Here is how to use them:
+
+```bash
+# Build ggml + examples
+git clone https://github.com/ggerganov/ggml
+cd ggml
+mkdir build && cd build
+cmake ..
+make -j4 gpt-2 gpt-j
+
+# Run the GPT-2 small 117M model
+../examples/gpt-2/download-ggml-model.sh 117M
+./bin/gpt-2 -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
+
+# Run the GPT-J 6B model (requires 12GB disk space and 16GB CPU RAM)
+../examples/gpt-j/download-ggml-model.sh 6B
+./bin/gpt-j -m models/gpt-j-6B/ggml-model.bin -p "This is an example"
+```
+
+This is the inference speed for the different models on my MacBook M1 Pro:
+
+| Model | Size | Time / Token |
+| --- | --- | --- |
+| GPT-2 | 117M | 5 ms |
+| GPT-2 | 345M | 12 ms |
+| GPT-2 | 774M | 23 ms |
+| GPT-2 | 1558M | 42 ms |
+| --- | --- | --- |
+| GPT-J | 6B | 125 ms |
+
+For more information, checkout the corresponding programs in the [examples](examples) folder.
--- /dev/null
+# Add new build types
+
+# ReleaseGG - Release with enabled asserts
+
+SET(CMAKE_CXX_FLAGS_RELEASEGG
+ "-O3"
+ CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
+ FORCE )
+SET(CMAKE_C_FLAGS_RELEASEGG
+ "-O3"
+ CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
+ FORCE )
+SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
+ ""
+ CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
+ FORCE )
+SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
+ ""
+ CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
+ FORCE )
+MARK_AS_ADVANCED(
+ CMAKE_CXX_FLAGS_RELEASEGG
+ CMAKE_C_FLAGS_RELEASEGG
+ CMAKE_EXE_LINKER_FLAGS_RELEASEGG
+ CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
+
+# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
+
+SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
+ "-O2 -g"
+ CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
+ FORCE )
+SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
+ "-O2 -g"
+ CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
+ FORCE )
+SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
+ ""
+ CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
+ FORCE )
+SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
+ ""
+ CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
+ FORCE )
+MARK_AS_ADVANCED(
+ CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
+ CMAKE_C_FLAGS_RELWITHDEBINFOGG
+ CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
+ CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
+
+if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
+ set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
+ set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
+endif()
--- /dev/null
+find_package(Git)
+
+# the commit's SHA1
+execute_process(COMMAND
+ "${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
+ WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
+ OUTPUT_VARIABLE GIT_SHA1
+ ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
+
+# the date of the commit
+execute_process(COMMAND
+ "${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
+ WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
+ OUTPUT_VARIABLE GIT_DATE
+ ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
+
+# the subject of the commit
+execute_process(COMMAND
+ "${GIT_EXECUTABLE}" log -1 --format=%s
+ WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
+ OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
+ ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
--- /dev/null
+add_library(ggml_utils STATIC utils.cpp)
+target_include_directories(ggml_utils PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
+
+add_subdirectory(gpt-2)
+add_subdirectory(gpt-j)
--- /dev/null
+#
+# gpt-2
+
+set(TEST_TARGET gpt-2)
+add_executable(${TEST_TARGET} main.cpp)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
--- /dev/null
+# gpt-2
+
+This is a C++ example running GPT-2 inference using the [ggml](https://github.com/ggerganov/ggml) library.
+The enitre code of the example is in [main.cpp](main.cpp).
+
+The program runs on the CPU - no video card is required.
+
+The example supports the following models:
+
+| Model | Description | Disk Size |
+| --- | --- | --- |
+| 117M | Small model | 240 MB |
+| 345M | Medium model | 680 MB |
+| 774M | Large model | 1.5 GB |
+| 1558M | XL model | 3.0 GB |
+
+Sample performance on MacBook M1 Pro:
+
+| Model | Size | Time / Token |
+| --- | --- | --- |
+| GPT-2 | 117M | 5 ms |
+| GPT-2 | 345M | 12 ms |
+| GPT-2 | 774M | 23 ms |
+| GPT-2 | 1558M | 42 ms |
+
+Sample output:
+
+```
+$ ./bin/gpt-2 -h
+usage: ./bin/gpt-2 [options]
+
+options:
+ -h, --help show this help message and exit
+ -s SEED, --seed SEED RNG seed (default: -1)
+ -t N, --threads N number of threads to use during computation (default: 8)
+ -p PROMPT, --prompt PROMPT
+ prompt to start generation with (default: random)
+ -n N, --n_predict N number of tokens to predict (default: 200)
+ --top_k N top-k sampling (default: 40)
+ --top_p N top-p sampling (default: 0.9)
+ --temp N temperature (default: 1.0)
+ -b N, --batch_size N batch size for prompt processing (default: 8)
+ -m FNAME, --model FNAME
+ model path (default: models/gpt-2-117M/ggml-model.bin)
+
+$ ./bin/gpt-2
+gpt2_model_load: loading model from 'models/gpt-2-117M/ggml-model.bin'
+gpt2_model_load: n_vocab = 50257
+gpt2_model_load: n_ctx = 1024
+gpt2_model_load: n_embd = 768
+gpt2_model_load: n_head = 12
+gpt2_model_load: n_layer = 12
+gpt2_model_load: f16 = 1
+gpt2_model_load: ggml ctx size = 311.12 MB
+gpt2_model_load: memory size = 72.00 MB, n_mem = 12288
+gpt2_model_load: model size = 239.08 MB
+main: number of tokens in prompt = 1
+
+So this is going to be the end of the line for us.
+
+If the Dolphins continue to do their business, it's possible that the team could make a bid to bring in new defensive coordinator Scott Linehan.
+
+Linehan's job is a little daunting, but he's a great coach and an excellent coach. I don't believe we're going to make the playoffs.
+
+We're going to have to work hard to keep our heads down and get ready to go.<|endoftext|>
+
+main: mem per token = 2048612 bytes
+main: load time = 106.32 ms
+main: sample time = 7.10 ms
+main: predict time = 506.40 ms / 5.06 ms per token
+main: total time = 629.84 ms
+```
+
+## Downloading and converting the original models
+
+You can download the original model files using the [download-model.sh](download-model.sh) Bash script.
+The model is in Tensorflow format, so before using it with ggml, we need to convert it to appropriate format.
+This is done via the [convert-ckpt-to-ggml.py](convert-ckpt-to-ggml.py) python script.
+
+Here is the entire process for the GPT-2 117M model:
+
+```
+cd ggml/build
+../examples/gpt-2/download-model.sh 117M
+
+Downloading model 117M ...
+models/gpt-2-117M/checkpoint 100%[=============================>] 77 --.-KB/s in 0s
+models/gpt-2-117M/encoder.json 100%[=============================>] 1018K 1.20MB/s in 0.8s
+models/gpt-2-117M/hparams.json 100%[=============================>] 90 --.-KB/s in 0s
+models/gpt-2-117M/model.ckpt.data-00000-of-00001 100%[=============================>] 474.70M 1.21MB/s in 8m 39s
+models/gpt-2-117M/model.ckpt.index 100%[=============================>] 5.09K --.-KB/s in 0s
+models/gpt-2-117M/model.ckpt.meta 100%[=============================>] 460.11K 806KB/s in 0.6s
+models/gpt-2-117M/vocab.bpe 100%[=============================>] 445.62K 799KB/s in 0.6s
+Done! Model '117M' saved in 'models/gpt-2-117M/'
+
+Run the convert-ckpt-to-ggml.py script to convert the model to ggml format.
+
+ python /Users/john/ggml/examples/gpt-2/convert-ckpt-to-ggml.py models/gpt-2-117M/
+
+```
+
+This conversion requires that you have python and Tensorflow installed on your computer.
+Still, if you want to avoid this, you can download the already converted ggml models as
+described below.
+
+## Downloading the ggml model directly
+
+For convenience, I will be hosting the converted ggml model files in order to make it easier to run the examples.
+This way, you can directly download a single binary file and start using it. No python or Tensorflow is required.
+
+Here is how to get the 117M ggml model:
+
+```
+cd ggml/build
+../examples/gpt-2/download-ggml-model.sh 117M
+
+Downloading ggml model 117M ...
+models/gpt-2-117M/ggml-model.bin 100%[===============================>] 239.58M 8.52MB/s in 28s
+Done! Model '117M' saved in 'models/gpt-2-117M/ggml-model.bin'
+You can now use it like this:
+
+ $ ./bin/gpt-2 -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
+
+```
+
+At some point, I might stop hosting these models. So in that case, simply revert to the manual process above.
--- /dev/null
+# Convert a model checkpoint to a ggml compatible file
+#
+# Load the model using TensorFlow.
+# Iterate over all variables and write them to a binary file.
+#
+# For each variable, write the following:
+# - Number of dimensions (int)
+# - Name length (int)
+# - Dimensions (int[n_dims])
+# - Name (char[name_length])
+# - Data (float[n_dims])
+#
+# By default, the bigger matrices are converted to 16-bit floats.
+# This can be disabled by adding the "use-f32" CLI argument.
+#
+# At the start of the ggml file we write the model parameters
+# and vocabulary.
+#
+
+import sys
+import json
+import struct
+import numpy as np
+import tensorflow as tf
+
+# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
+ The reversible bpe codes work on unicode strings.
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
+ """
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8+n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+if len(sys.argv) < 2:
+ print("Usage: convert-ckpt-to-ggml.py dir-model [use-f32]\n")
+ sys.exit(1)
+
+# output in the same directory as the model
+dir_model = sys.argv[1]
+fname_out = sys.argv[1] + "/ggml-model.bin"
+
+with open(dir_model + "/encoder.json", "r") as f:
+ encoder = json.load(f)
+
+with open(dir_model + "/hparams.json", "r") as f:
+ hparams = json.load(f)
+
+# use 16-bit or 32-bit floats
+use_f16 = True
+if len(sys.argv) > 2:
+ use_f16 = False
+ fname_out = sys.argv[1] + "/ggml-model-f32.bin"
+
+list_vars = tf.train.list_variables(dir_model)
+
+fout = open(fname_out, "wb")
+
+fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
+fout.write(struct.pack("i", hparams["n_vocab"]))
+fout.write(struct.pack("i", hparams["n_ctx"]))
+fout.write(struct.pack("i", hparams["n_embd"]))
+fout.write(struct.pack("i", hparams["n_head"]))
+fout.write(struct.pack("i", hparams["n_layer"]))
+fout.write(struct.pack("i", use_f16))
+
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v:k for k, v in byte_encoder.items()}
+
+fout.write(struct.pack("i", len(encoder)))
+for key in encoder:
+ text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
+ fout.write(struct.pack("i", len(text)))
+ fout.write(text)
+
+for name, shape in list_vars:
+ print("Processing variable: " + name + " with shape: ", shape)
+
+ data = tf.train.load_variable(dir_model, name).squeeze()
+ n_dims = len(data.shape);
+
+ # ftype == 0 -> float32, ftype == 1 -> float16
+ ftype = 0;
+ if use_f16:
+ # match name:
+ # "model/wte"
+ # "model/h.*/attn/c_attn/w"
+ # "model/h.*/attn/c_proj/w"
+ # "model/h.*/mlp/c_fc/w"
+ # "model/h.*/mlp/c_proj/w"
+ if name == "model/wte" or name[-2:] == "/w":
+ print(" Converting to float16")
+ data = data.astype(np.float16)
+ ftype = 1
+
+ # for efficiency - transpose the projection matrices
+ if name[-13:] == "/mlp/c_proj/w":
+ print(" Transposing")
+ data = data.transpose()
+
+ # header
+ str = name.encode('utf-8')
+ fout.write(struct.pack("iii", n_dims, len(str), ftype))
+ for i in range(n_dims):
+ fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
+ fout.write(str);
+
+ # data
+ data.tofile(fout)
+
+fout.close()
+
+print("Done. Output file: " + fname_out)
+print("")
--- /dev/null
+#!/bin/bash
+
+# This script downloads GPT-2 model files that have already been converted to ggml format.
+# This way you don't have to convert them yourself.
+#
+# If you want to download the original GPT-2 model files, use the "download-model.sh" script instead.
+
+ggml_path=$(dirname $(realpath $0))
+
+# GPT-2 models
+models=( "117M" "345M" "774M" "1558M" )
+
+# list available models
+function list_models {
+ printf "\n"
+ printf " Available models:"
+ for model in "${models[@]}"; do
+ printf " $model"
+ done
+ printf "\n\n"
+}
+
+if [ "$#" -ne 1 ]; then
+ printf "Usage: $0 <model>\n"
+ list_models
+
+ exit 1
+fi
+
+model=$1
+
+if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
+ printf "Invalid model: $model\n"
+ list_models
+
+ exit 1
+fi
+
+# download ggml model
+
+printf "Downloading ggml model $model ...\n"
+
+mkdir -p models/gpt-2-$model
+
+wget --quiet --show-progress -O models/gpt-2-$model/ggml-model.bin https://ggml.ggerganov.com/ggml-model-gpt-2-$model.bin
+
+if [ $? -ne 0 ]; then
+ printf "Failed to download ggml model $model \n"
+ printf "Please try again later or download the original GPT-2 model files and convert them yourself.\n"
+ exit 1
+fi
+
+printf "Done! Model '$model' saved in 'models/gpt-2-$model/ggml-model.bin'\n"
+printf "You can now use it like this:\n\n"
+printf " $ ./bin/gpt-2 -m models/gpt-2-$model/ggml-model.bin -p \"This is an example\"\n"
+printf "\n"
--- /dev/null
+#!/bin/bash
+
+ggml_path=$(dirname $(realpath $0))
+
+# GPT-2 models
+models=( "117M" "345M" "774M" "1558M" )
+
+# list available models
+function list_models {
+ printf "\n"
+ printf " Available models:"
+ for model in "${models[@]}"; do
+ printf " $model"
+ done
+ printf "\n\n"
+}
+
+if [ "$#" -ne 1 ]; then
+ printf "Usage: $0 <model>\n"
+ list_models
+
+ exit 1
+fi
+
+model=$1
+
+if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
+ printf "Invalid model: $model\n"
+ list_models
+
+ exit 1
+fi
+
+# download model
+
+printf "Downloading model $model ...\n"
+
+mkdir -p models/gpt-2-$model
+
+for file in checkpoint encoder.json hparams.json model.ckpt.data-00000-of-00001 model.ckpt.index model.ckpt.meta vocab.bpe; do
+ wget --quiet --show-progress -O models/gpt-2-$model/$file https://openaipublic.blob.core.windows.net/gpt-2/models/$model/$file
+done
+
+printf "Done! Model '$model' saved in 'models/gpt-2-$model/'\n\n"
+printf "Run the convert-ckpt-to-ggml.py script to convert the model to ggml format.\n"
+printf "\n"
+printf " python $ggml_path/convert-ckpt-to-ggml.py models/gpt-2-$model/\n"
+printf "\n"
--- /dev/null
+#include "ggml/ggml.h"
+
+#include "utils.h"
+
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <vector>
+
+// default hparams (GPT-2 117M)
+struct gpt2_hparams {
+ int32_t n_vocab = 50257;
+ int32_t n_ctx = 1024;
+ int32_t n_embd = 768;
+ int32_t n_head = 12;
+ int32_t n_layer = 12;
+ int32_t f16 = 1;
+};
+
+struct gpt2_layer {
+ // normalization
+ struct ggml_tensor * ln_1_g;
+ struct ggml_tensor * ln_1_b;
+
+ struct ggml_tensor * ln_2_g;
+ struct ggml_tensor * ln_2_b;
+
+ // attention
+ struct ggml_tensor * c_attn_attn_w;
+ struct ggml_tensor * c_attn_attn_b;
+
+ struct ggml_tensor * c_attn_proj_w;
+ struct ggml_tensor * c_attn_proj_b;
+
+ // mlp
+ struct ggml_tensor * c_mlp_fc_w;
+ struct ggml_tensor * c_mlp_fc_b;
+
+ struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
+ struct ggml_tensor * c_mlp_proj_b;
+};
+
+struct gpt2_model {
+ gpt2_hparams hparams;
+
+ // normalization
+ struct ggml_tensor * ln_f_g;
+ struct ggml_tensor * ln_f_b;
+
+ struct ggml_tensor * wte; // position embedding
+ struct ggml_tensor * wpe; // token embedding
+
+ std::vector<gpt2_layer> layers;
+
+ // key + value memory
+ struct ggml_tensor * memory_k;
+ struct ggml_tensor * memory_v;
+
+ //
+ struct ggml_context * ctx;
+ std::map<std::string, struct ggml_tensor *> tensors;
+};
+
+// load the model's weights from a file
+bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
+ printf("%s: loading model from '%s'\n", __func__, fname.c_str());
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ fin.read((char *) &magic, sizeof(magic));
+ if (magic != 0x67676d6c) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+ return false;
+ }
+ }
+
+ // load hparams
+ {
+ auto & hparams = model.hparams;
+
+ fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
+ fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ fin.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
+ printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
+ printf("%s: n_head = %d\n", __func__, hparams.n_head);
+ printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+ }
+
+ // load vocab
+ {
+ int32_t n_vocab = 0;
+ fin.read((char *) &n_vocab, sizeof(n_vocab));
+
+ if (n_vocab != model.hparams.n_vocab) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
+ return false;
+ }
+
+ std::string word;
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ fin.read((char *) &len, sizeof(len));
+
+ word.resize(len);
+ fin.read((char *) word.data(), len);
+
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+ }
+ }
+
+ // for the big tensors, we have the option to store the data in 16-bit floats
+ // in order to save memory and also to speed up the computation
+ const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+ auto & ctx = model.ctx;
+
+ size_t ctx_size = 0;
+
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+
+ ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
+ ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
+
+ ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
+ ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
+
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
+
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
+
+ ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
+ ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
+
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
+ ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
+
+ ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
+ ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
+
+ ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
+ ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
+
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
+
+ ctx_size += (6 + 12*n_layer)*256; // object overhead
+
+ printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+ }
+
+ // create the ggml context
+ {
+ struct ggml_init_params params = {
+ .mem_size = ctx_size,
+ .mem_buffer = NULL,
+ };
+
+ model.ctx = ggml_init(params);
+ if (!model.ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+ }
+
+ // prepare memory for the weights
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+
+ model.layers.resize(n_layer);
+
+ model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
+ model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
+
+ // map by name
+ model.tensors["model/ln_f/g"] = model.ln_f_g;
+ model.tensors["model/ln_f/b"] = model.ln_f_b;
+
+ model.tensors["model/wte"] = model.wte;
+ model.tensors["model/wpe"] = model.wpe;
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+
+ layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
+ layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
+
+ layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
+ layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
+
+ layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
+ layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ // map by name
+ model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
+ model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
+
+ model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
+ model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
+
+ model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
+ model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
+
+ model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
+ model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
+
+ model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
+ model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
+
+ model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
+ model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
+ }
+ }
+
+ // key + value memory
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+
+ const int n_mem = n_layer*n_ctx;
+ const int n_elements = n_embd*n_mem;
+
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+
+ const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
+
+ printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
+ }
+
+ // load weights
+ {
+ size_t total_size = 0;
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+ fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (fin.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ fin.read(&name[0], length);
+
+ if (model.tensors.find(name.data()) == model.tensors.end()) {
+ fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+ return false;
+ }
+
+ auto tensor = model.tensors[name.data()];
+ if (ggml_nelements(tensor) != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+
+ if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
+ return false;
+ }
+
+ const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
+
+ if (nelements*bpe != ggml_nbytes(tensor)) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+ return false;
+ }
+
+ fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+
+ //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+ total_size += ggml_nbytes(tensor);
+ }
+
+ printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
+ }
+
+ fin.close();
+
+ return true;
+}
+
+// evaluate the transformer
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - n_past: the context size so far
+// - embd_inp: the embeddings of the tokens in the context
+// - embd_w: the predicted probabilities of the next token
+//
+bool gpt2_eval(
+ const gpt2_model & model,
+ const int n_threads,
+ const int n_past,
+ const std::vector<gpt_vocab::id> & embd_inp,
+ std::vector<float> & embd_w,
+ size_t & mem_per_token) {
+ const int N = embd_inp.size();
+
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_head = hparams.n_head;
+ const int n_vocab = hparams.n_vocab;
+
+ const int d_key = n_embd/n_head;
+
+ static size_t buf_size = 256u*1024*1024;
+ static void * buf = malloc(buf_size);
+
+ if (mem_per_token > 0 && mem_per_token*N > buf_size) {
+ const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
+ //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
+
+ // reallocate
+ buf_size = buf_size_new;
+ buf = realloc(buf, buf_size);
+ if (buf == nullptr) {
+ fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
+ return false;
+ }
+ }
+
+ struct ggml_init_params params = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
+
+ struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ for (int i = 0; i < N; ++i) {
+ ((int32_t *) position->data)[i] = n_past + i;
+ }
+
+ // wte + wpe
+ struct ggml_tensor * inpL =
+ ggml_add(ctx0,
+ ggml_get_rows(ctx0, model.wte, embd),
+ ggml_get_rows(ctx0, model.wpe, position));
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * cur;
+
+ // norm
+ {
+ // [ 768, N]
+ cur = ggml_norm(ctx0, inpL);
+
+ // cur = ln_1_g*cur + ln_1_b
+ // [ 768, N]
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
+ cur),
+ ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
+ }
+
+ // attn
+ // [2304, 768] - model.layers[il].c_attn_attn_w
+ // [2304, 1] - model.layers[il].c_attn_attn_b
+ // [ 768, N] - cur (in)
+ // [2304, N] - cur (out)
+ //
+ // cur = attn_w*cur + attn_b
+ // [2304, N]
+ {
+ cur = ggml_mul_mat(ctx0,
+ ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
+ cur);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
+ cur);
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
+ struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
+ struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
+
+ // store key and value to memory
+ if (N >= 1) {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
+ }
+
+ // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
+ // [64, N, 12]
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ ggml_cpy(ctx0,
+ Qcur,
+ ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
+ // [64, n_past + N, 12]
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 0, 2, 1, 3);
+
+ // K * Q
+ // [n_past + N, N, 12]
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ // [n_past + N, N, 12]
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
+ );
+
+ // KQ_masked = mask_past(KQ_scaled)
+ // [n_past + N, N, 12]
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+ // KQ = soft_max(KQ_masked)
+ // [n_past + N, N, 12]
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+ // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
+ // [n_past + N, 64, 12]
+ struct ggml_tensor * V_trans =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 1, 2, 0, 3);
+
+ // KQV = transpose(V) * KQ_soft_max
+ // [64, N, 12]
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ // [64, 12, N]
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ // [768, N]
+ cur = ggml_cpy(ctx0,
+ KQV_merged,
+ ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+ }
+
+ // projection
+ // [ 768, 768] - model.layers[il].c_attn_proj_w
+ // [ 768, 1] - model.layers[il].c_attn_proj_b
+ // [ 768, N] - cur (in)
+ // [ 768, N] - cur (out)
+ //
+ // cur = proj_w*cur + proj_b
+ // [768, N]
+ {
+ cur = ggml_mul_mat(ctx0,
+ ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
+ cur);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
+ cur);
+ }
+
+ // add the input
+ cur = ggml_add(ctx0, cur, inpL);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_norm(ctx0, inpFF);
+
+ // cur = ln_2_g*cur + ln_2_b
+ // [ 768, N]
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
+ cur),
+ ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
+ }
+
+ // fully connected
+ // [3072, 768] - model.layers[il].c_mlp_fc_w
+ // [3072, 1] - model.layers[il].c_mlp_fc_b
+ // [ 768, N] - cur (in)
+ // [3072, N] - cur (out)
+ //
+ // cur = fc_w*cur + fc_b
+ // [3072, N]
+ cur = ggml_mul_mat(ctx0,
+ ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
+ cur);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
+ cur);
+
+ // GELU activation
+ // [3072, N]
+ cur = ggml_gelu(ctx0, cur);
+
+ // projection
+ // [ 768, 3072] - model.layers[il].c_mlp_proj_w
+ // [ 768, 1] - model.layers[il].c_mlp_proj_b
+ // [3072, N] - cur (in)
+ // [ 768, N] - cur (out)
+ //
+ // cur = proj_w*cur + proj_b
+ // [768, N]
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].c_mlp_proj_w_trans,
+ cur);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
+ cur);
+ }
+
+ // input for next layer
+ inpL = ggml_add(ctx0, cur, inpFF);
+ }
+
+ // norm
+ {
+ // [ 768, N]
+ inpL = ggml_norm(ctx0, inpL);
+
+ // inpL = ln_f_g*inpL + ln_f_b
+ // [ 768, N]
+ inpL = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.ln_f_g, inpL),
+ inpL),
+ ggml_repeat(ctx0, model.ln_f_b, inpL));
+ }
+
+ // inpL = WTE * inpL
+ // [ 768, 50257] - model.wte
+ // [ 768, N] - inpL
+ inpL = ggml_mul_mat(ctx0, model.wte, inpL);
+
+ // to logits
+ inpL = ggml_soft_max(ctx0, inpL);
+
+ // run the computation
+ ggml_build_forward_expand(&gf, inpL);
+ ggml_graph_compute (ctx0, &gf);
+
+ //if (n_past%100 == 0) {
+ // ggml_graph_print (&gf);
+ // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
+ //}
+
+ //embd_w.resize(n_vocab*N);
+ //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+
+ // return result for just the last token
+ embd_w.resize(n_vocab);
+ memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
+
+ if (mem_per_token == 0) {
+ mem_per_token = ggml_used_mem(ctx0)/N;
+ }
+ //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+int main(int argc, char ** argv) {
+ const int64_t t_main_start_us = ggml_time_us();
+
+ gpt_params params;
+ params.model = "models/gpt-2-117M/ggml-model.bin";
+
+ if (gpt_params_parse(argc, argv, params) == false) {
+ return 1;
+ }
+
+ if (params.seed < 0) {
+ params.seed = time(NULL);
+ }
+
+ printf("%s: seed = %d\n", __func__, params.seed);
+
+ std::mt19937 rng(params.seed);
+ if (params.prompt.empty()) {
+ params.prompt = gpt_random_prompt(rng);
+ }
+
+ int64_t t_load_us = 0;
+
+ gpt_vocab vocab;
+ gpt2_model model;
+
+ // load the model
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!gpt2_model_load(params.model, model, vocab)) {
+ fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+ return 1;
+ }
+
+ t_load_us = ggml_time_us() - t_start_us;
+ }
+
+ int n_past = 0;
+
+ int64_t t_sample_us = 0;
+ int64_t t_predict_us = 0;
+
+ std::vector<float> embd_w;
+
+ // tokenize the prompt
+ std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
+
+ params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
+
+ printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
+ printf("\n");
+
+ // submit the input prompt token-by-token
+ // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
+ std::vector<gpt_vocab::id> embd;
+
+ // determine the required inference memory per token:
+ size_t mem_per_token = 0;
+ gpt2_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, embd_w, mem_per_token);
+
+ for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
+ // predict
+ if (embd.size() > 0) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!gpt2_eval(model, params.n_threads, n_past, embd, embd_w, mem_per_token)) {
+ printf("Failed to predict\n");
+ return 1;
+ }
+
+ t_predict_us += ggml_time_us() - t_start_us;
+ }
+
+ n_past += embd.size();
+ embd.clear();
+
+ if (i >= embd_inp.size()) {
+ // sample next token
+ const int top_k = params.top_k;
+ const float top_p = params.top_p;
+ const float temp = params.temp;
+
+ const int n_vocab = model.hparams.n_vocab;
+
+ gpt_vocab::id id = 0;
+
+ {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ id = gpt_sample_top_k_top_p(vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, rng);
+
+ t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+
+ // add it to the context
+ embd.push_back(id);
+ } else {
+ // if here, it means we are still processing the input prompt
+ for (int k = i; k < embd_inp.size(); k++) {
+ embd.push_back(embd_inp[k]);
+ if (embd.size() > params.n_batch) {
+ break;
+ }
+ }
+ i += embd.size() - 1;
+ }
+
+ // display text
+ for (auto id : embd) {
+ printf("%s", vocab.id_to_token[id].c_str());
+ }
+ fflush(stdout);
+
+ // end of text token
+ if (embd.back() == 50256) {
+ break;
+ }
+ }
+
+ // report timing
+ {
+ const int64_t t_main_end_us = ggml_time_us();
+
+ printf("\n\n");
+ printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
+ printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
+ printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
+ printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
+ printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
+ }
+
+ ggml_free(model.ctx);
+
+ return 0;
+}
--- /dev/null
+#
+# gpt-j
+
+set(TEST_TARGET gpt-j)
+add_executable(${TEST_TARGET} main.cpp)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
--- /dev/null
+# gpt-j
+
+Local GPT-J inference on your computer using C/C++
+
+No video card required. You just need to have 16 GB of RAM.
+
+For example, you can run this on a 16 GB MacBook M1.
+
+## Motivation
+
+The GPT-J 6B model is the open-source alternative to OpenAI's GPT-3. It's basically a neural network that
+allows you to generate coherent, human-like text given a certain context (prompt).
+
+The GPT-J model is quite big - the compact version of the model uses 16-bit floating point representation
+of the weights and is still 12 GB big. This means that in order to run inference on your computer, you
+would need to have a video card with at least 12 GB of video RAM. Alternatively, you can try to run the
+python implementations on the CPU, but that would probably not be very efficient as they are primarily
+optimized for running on a GPU (or at least this is my guess - I don't have much experience with python).
+
+Looking on the internet, I couldn't find a dedicated CPU implementation that would allow me to run the model
+without a high-end video card. So I decided to write my own inference using a custom build tensor library.
+The tensor library (called [ggml](https://github.com/ggerganov/ggml), written in C) is in early development
+stage, but it already allows me to run the GPT-J model.
+
+On my MacBook M1 Pro, I achieve an inference speed of about `125 ms/token` or about 2-3 words per second.
+
+Here is a sample run with prompt `int main(int argc, char ** argv) {`:
+
+```
+$ time ./bin/gpt-j -p "int main(int argc, char ** argv) {"
+
+gptj_model_load: loading model from 'models/gpt-j-6B/ggml-model.bin' - please wait ...
+gptj_model_load: n_vocab = 50400
+gptj_model_load: n_ctx = 2048
+gptj_model_load: n_embd = 4096
+gptj_model_load: n_head = 16
+gptj_model_load: n_layer = 28
+gptj_model_load: n_rot = 64
+gptj_model_load: f16 = 1
+gptj_model_load: ggml ctx size = 13334.86 MB
+gptj_model_load: memory_size = 1792.00 MB, n_mem = 57344
+gptj_model_load: ................................... done
+gptj_model_load: model size = 11542.79 MB / num tensors = 285
+main: number of tokens in prompt = 13
+
+int main(int argc, char ** argv) {
+ (void)argc;
+ (void)argv;
+
+ {
+ struct sockaddr_in addr;
+ int addrlen;
+ char * ip = "192.168.1.4";
+ int i;
+
+ if ( (addrlen = sizeof(addr)) == -1 )
+ return -1;
+
+ for (i = 0; i < 10; ++i) {
+ addr.sin_family = AF_INET;
+ addr.sin_addr.s_addr = inet_addr(ip);
+
+main: mem per token = 16430420 bytes
+main: load time = 6211.48 ms
+main: sample time = 13.74 ms
+main: predict time = 26420.34 ms / 124.62 ms per token
+main: total time = 33035.37 ms
+
+real 0m33.171s
+user 3m32.269s
+sys 0m3.686s
+
+$
+```
+
+It took ~6.2 seconds to load the model to memory. After that, it took ~26.4 seconds to generate 200
+tokens of what looks like to be the beginning of a networking program in C. Pretty cool!
+
+## Implementation details
+
+The high level implementation of the model is contained in the [main.cpp](main.cpp) file. The core
+computations are performed by the `ggml` library.
+
+The most performance critical part of the implementation is of course the matrix multiplication routine.
+99% of the time is spent here, so it is important to optimize this as much as possible.
+
+On Arm64, I utilize the 128-bit NEON intrinsics for 16-bit floating point operations:
+
+https://github.com/ggerganov/ggml/blob/1548ac6743c594cc920ccb3503444b0e2bdf4d56/src/ggml.c#L187-L243
+
+These instructions allow each core to operate simultaneously on 64 floating point numbers. I'm no expert
+in SIMD, but after quite some trials this was the most efficient code for dot product that I could come up
+with. Combined with the parallel computation on 8 CPU threads, I think I got close to the maximum performance
+that one could possibly get on the M1 CPU. Still, I'm curious to know if there is a more efficient way to
+implement this.
+
+One interesting property of the GPT-J transformer architecture is that it allows you to perform part
+of the inference in parallel - i.e. the Feed-forward layer can be computed in parallel to the Self-Attention
+layer:
+
+https://github.com/ggerganov/ggml/blob/1548ac6743c594cc920ccb3503444b0e2bdf4d56/examples/gpt-j/main.cpp#L507-L531
+
+So I thought why not bring in the M1 GPU to compute half of the neural network in parallel to the CPU.
+Thanks to the shared memory model, it was relatively easy to offload half of the computation to the GPU
+using [Metal Performance Shaders](https://developer.apple.com/documentation/metalperformanceshaders).
+However, to my surprise, I did not get any performance improvement at all. My conclusion was that the
+8-thread NEON CPU computation is basically saturating the memory bandwidth of the M1 and since the CPU
+and the GPU on the MacBook are sharing that bandwidth, it does not help to offload the computation to the
+GPU. Another observation was that the MPS GPU matrix multiplication using 16-bit floats had the same
+performance as the 8-thread NEON CPU implementation. Again, I explain this with a saturated memory channel.
+But of course, I could be totally wrong and somehow my implementation wasn't utilizing the resources
+correctly.
+
+Another property of my implementation is that it does not perform any memory allocations once the model
+is loaded into memory. All required memory is allocated at the start of the program.
+
+## Usage
+
+If you want to give this a try and you are on Linux or Mac OS, simply follow these instructions:
+
+```bash
+# Clone the ggml library and build the gpt-j example
+git clone https://github.com/ggerganov/ggml
+cd ggml
+mkdir build && cd build
+cmake ..
+make -j4 gpt-j
+
+# Download the ggml-compatible GPT-J 6B model (requires 12GB disk space)
+../examples/gpt-j/download-ggml-model.sh 6B
+
+# Run the inference (requires 16GB of CPU RAM)
+./bin/gpt-j -m models/gpt-j-6B/ggml-model.bin -p "This is an example"
+```
+
+To run the `gpt-j` tool, you need the 12GB `ggml-model.bin` file which contains the GPT-J model in
+[ggml](https://github.com/ggerganov/ggml) format. In the instructions above, I download the binary file
+directly from one of my servers, using the [download-ggml-model.sh](download-ggml-model.sh) script.
+
+---
+
+Alternatively, you can perform the conversion yourself.
+
+First, you need to download the full GPT-J model from here: https://huggingface.co/EleutherAI/gpt-j-6B
+
+Note that the full model is quite big - about 72 GB. After you download it, you need to make the
+conversion using the [convert-h5-to-ggml.py](convert-h5-to-ggml.py) script. This will generate the
+`ggml-model.bin` file, which you can then use with the `gpt-j` program.
+
+## GPT-2
+
+I have also implemented a tool for CPU inference using the smaller GPT-2 models. They have worse
+quality compared to GPT-J, but are much faster to execute.
+
+Checkout the GPT-2 example here: [gpt-2](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2)
--- /dev/null
+# Convert GPT-J-6B h5 transformer model to ggml format
+#
+# Load the model using GPTJForCausalLM.
+# Iterate over all variables and write them to a binary file.
+#
+# For each variable, write the following:
+# - Number of dimensions (int)
+# - Name length (int)
+# - Dimensions (int[n_dims])
+# - Name (char[name_length])
+# - Data (float[n_dims])
+#
+# By default, the bigger matrices are converted to 16-bit floats.
+# This can be disabled by adding the "use-f32" CLI argument.
+#
+# At the start of the ggml file we write the model parameters
+# and vocabulary.
+#
+
+import sys
+import struct
+import json
+import torch
+import numpy as np
+
+from transformers import GPTJForCausalLM
+
+# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
+ The reversible bpe codes work on unicode strings.
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
+ """
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8+n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+if len(sys.argv) < 2:
+ print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
+ sys.exit(1)
+
+# output in the same directory as the model
+dir_model = sys.argv[1]
+fname_out = sys.argv[1] + "/ggml-model.bin"
+
+with open(dir_model + "/vocab.json", "r") as f:
+ encoder = json.load(f)
+
+with open(dir_model + "/added_tokens.json", "r") as f:
+ encoder_added = json.load(f)
+
+with open(dir_model + "/config.json", "r") as f:
+ hparams = json.load(f)
+
+# use 16-bit or 32-bit floats
+use_f16 = True
+if len(sys.argv) > 2:
+ use_f16 = False
+ fname_out = sys.argv[1] + "/ggml-model-f32.bin"
+
+model = GPTJForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
+#print (model)
+
+list_vars = model.state_dict()
+#print (list_vars)
+
+fout = open(fname_out, "wb")
+
+fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
+fout.write(struct.pack("i", hparams["vocab_size"]))
+fout.write(struct.pack("i", hparams["n_positions"]))
+fout.write(struct.pack("i", hparams["n_embd"]))
+fout.write(struct.pack("i", hparams["n_head"]))
+fout.write(struct.pack("i", hparams["n_layer"]))
+fout.write(struct.pack("i", hparams["rotary_dim"]))
+fout.write(struct.pack("i", use_f16))
+
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v:k for k, v in byte_encoder.items()}
+
+fout.write(struct.pack("i", len(encoder) + len(encoder_added)))
+for key in encoder:
+ text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
+ fout.write(struct.pack("i", len(text)))
+ fout.write(text)
+
+for key in encoder_added:
+ text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
+ fout.write(struct.pack("i", len(text)))
+ fout.write(text)
+
+for name in list_vars.keys():
+ data = list_vars[name].squeeze().numpy()
+ print("Processing variable: " + name + " with shape: ", data.shape)
+
+ # we don't need these
+ if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
+ print(" Skipping variable: " + name)
+ continue
+
+ n_dims = len(data.shape);
+
+ # ftype == 0 -> float32, ftype == 1 -> float16
+ ftype = 0;
+ if use_f16:
+ if name[-7:] == ".weight" and n_dims == 2:
+ print(" Converting to float16")
+ data = data.astype(np.float16)
+ ftype = 1
+
+ # for efficiency - transpose these matrices:
+ # "transformer.h.*.mlp.fc_in.weight
+ # "transformer.h.*.attn.out_proj.weight
+ # "transformer.h.*.attn.q_proj.weight"
+ # "transformer.h.*.attn.k_proj.weight"
+ # "transformer.h.*.attn.v_proj.weight"
+ if name.endswith(".mlp.fc_in.weight") or \
+ name.endswith(".attn.out_proj.weight") or \
+ name.endswith(".attn.q_proj.weight") or \
+ name.endswith(".attn.k_proj.weight") or \
+ name.endswith(".attn.v_proj.weight"):
+ print(" Transposing")
+ data = data.transpose()
+
+ # header
+ str = name.encode('utf-8')
+ fout.write(struct.pack("iii", n_dims, len(str), ftype))
+ for i in range(n_dims):
+ fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
+ fout.write(str);
+
+ # data
+ data.tofile(fout)
+
+fout.close()
+
+print("Done. Output file: " + fname_out)
+print("")
--- /dev/null
+#!/bin/bash
+
+# This script downloads GPT-J model files that have already been converted to ggml format.
+# This way you don't have to convert them yourself.
+#
+# If you want to download the original GPT-J model files, use the "download-model.sh" script instead.
+
+ggml_path=$(dirname $(realpath $0))
+
+# GPT-J models
+models=( "6B" )
+
+# list available models
+function list_models {
+ printf "\n"
+ printf " Available models:"
+ for model in "${models[@]}"; do
+ printf " $model"
+ done
+ printf "\n\n"
+}
+
+if [ "$#" -ne 1 ]; then
+ printf "Usage: $0 <model>\n"
+ list_models
+
+ exit 1
+fi
+
+model=$1
+
+if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
+ printf "Invalid model: $model\n"
+ list_models
+
+ exit 1
+fi
+
+# download ggml model
+
+printf "Downloading ggml model $model ...\n"
+
+mkdir -p models/gpt-j-$model
+
+wget --quiet --show-progress -O models/gpt-j-$model/ggml-model.bin https://ggml.ggerganov.com/ggml-model-gpt-j-$model.bin
+
+if [ $? -ne 0 ]; then
+ printf "Failed to download ggml model $model \n"
+ printf "Please try again later or download the original GPT-J model files and convert them yourself.\n"
+ exit 1
+fi
+
+printf "Done! Model '$model' saved in 'models/gpt-j-$model/ggml-model.bin'\n"
+printf "You can now use it like this:\n\n"
+printf " $ ./bin/gpt-j -m models/gpt-j-$model/ggml-model.bin -p \"This is an example\"\n"
+printf "\n"
--- /dev/null
+#!/bin/bash
+
+printf "To obtain the GPT-J 6B model files, please visit: https://huggingface.co/EleutherAI/gpt-j-6B\n\n"
+
+printf "The model is very big. For example, the reposirory above is 72GB in size.\n"
+printf "If you are sure that you want to clone it, simply run the following command:\n\n"
+
+printf " $ git clone https://huggingface.co/EleutherAI/gpt-j-6B models/gpt-j-6B\n\n"
+
+printf "Alternatively, use the 'download-ggml-model.sh' script to download a 12GB ggml version of the model.\n"
+printf "This version is enough to run inference using the ggml library.\n\n"
--- /dev/null
+#include "ggml/ggml.h"
+
+#include "utils.h"
+
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <vector>
+
+// default hparams (GPT-J 6B)
+struct gptj_hparams {
+ int32_t n_vocab = 50400;
+ int32_t n_ctx = 2048;
+ int32_t n_embd = 4096;
+ int32_t n_head = 16;
+ int32_t n_layer = 28;
+ int32_t n_rot = 64;
+ int32_t f16 = 1;
+};
+
+struct gptj_layer {
+ // normalization
+ struct ggml_tensor * ln_1_g;
+ struct ggml_tensor * ln_1_b;
+
+ // attention
+ struct ggml_tensor * c_attn_q_proj_w;
+ struct ggml_tensor * c_attn_k_proj_w;
+ struct ggml_tensor * c_attn_v_proj_w;
+
+ struct ggml_tensor * c_attn_proj_w;
+
+ // ff
+ struct ggml_tensor * c_mlp_fc_w;
+ struct ggml_tensor * c_mlp_fc_b;
+
+ struct ggml_tensor * c_mlp_proj_w_trans;
+ struct ggml_tensor * c_mlp_proj_b;
+};
+
+struct gptj_model {
+ gptj_hparams hparams;
+
+ // normalization
+ struct ggml_tensor * ln_f_g;
+ struct ggml_tensor * ln_f_b;
+
+ struct ggml_tensor * wte; // position embedding
+
+ struct ggml_tensor * lmh_g; // language model head
+ struct ggml_tensor * lmh_b; // language model bias
+
+ std::vector<gptj_layer> layers;
+
+ // key + value memory
+ struct ggml_tensor * memory_k;
+ struct ggml_tensor * memory_v;
+
+ //
+ struct ggml_context * ctx;
+ std::map<std::string, struct ggml_tensor *> tensors;
+};
+
+// load the model's weights from a file
+bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab) {
+ printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ fin.read((char *) &magic, sizeof(magic));
+ if (magic != 0x67676d6c) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+ return false;
+ }
+ }
+
+ // load hparams
+ {
+ auto & hparams = model.hparams;
+
+ fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
+ fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ fin.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
+ printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
+ printf("%s: n_head = %d\n", __func__, hparams.n_head);
+ printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
+ printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+ }
+
+ // load vocab
+ {
+ int32_t n_vocab = 0;
+ fin.read((char *) &n_vocab, sizeof(n_vocab));
+
+ if (n_vocab != model.hparams.n_vocab) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
+ return false;
+ }
+
+ std::string word;
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ fin.read((char *) &len, sizeof(len));
+
+ word.resize(len);
+ fin.read((char *) word.data(), len);
+
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+ }
+ }
+
+ // for the big tensors, we have the option to store the data in 16-bit floats
+ // in order to save memory and also to speed up the computation
+ const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+ auto & ctx = model.ctx;
+
+ size_t ctx_size = 0;
+
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+
+ ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
+ ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
+
+ ctx_size += n_embd*n_vocab*ggml_type_size(wtype); // wte
+
+ ctx_size += n_embd*n_vocab*ggml_type_size(wtype); // lmh_g
+ ctx_size += n_vocab*ggml_type_size(GGML_TYPE_F32); // lmh_b
+
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
+ ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
+
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_q_proj_w
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_k_proj_w
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_v_proj_w
+
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
+
+ ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
+ ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
+
+ ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w_trans
+ ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
+
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
+
+ ctx_size += (5 + 10*n_layer)*256; // object overhead
+
+ printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+ }
+
+ // create the ggml context
+ {
+ struct ggml_init_params params = {
+ .mem_size = ctx_size,
+ .mem_buffer = NULL,
+ };
+
+ model.ctx = ggml_init(params);
+ if (!model.ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+ }
+
+ // prepare memory for the weights
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+
+ model.layers.resize(n_layer);
+
+ model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
+
+ model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
+ model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
+
+ // map by name
+ model.tensors["transformer.wte.weight"] = model.wte;
+
+ model.tensors["transformer.ln_f.weight"] = model.ln_f_g;
+ model.tensors["transformer.ln_f.bias"] = model.ln_f_b;
+
+ model.tensors["lm_head.weight"] = model.lmh_g;
+ model.tensors["lm_head.bias"] = model.lmh_b;
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+
+ layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+
+ layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+
+ layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
+ layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
+
+ layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
+ layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ // map by name
+ model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g;
+ model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b;
+
+ model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w;
+ model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w;
+ model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w;
+
+ model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w;
+
+ model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w;
+ model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b;
+
+ model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w_trans;
+ model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b;
+ }
+ }
+
+ // key + value memory
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+
+ const int n_mem = n_layer*n_ctx;
+ const int n_elements = n_embd*n_mem;
+
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+
+ const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
+
+ printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
+ }
+
+ // load weights
+ {
+ int n_tensors = 0;
+ size_t total_size = 0;
+
+ printf("%s: ", __func__);
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+ fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (fin.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ fin.read(&name[0], length);
+
+ if (model.tensors.find(name.data()) == model.tensors.end()) {
+ fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+ return false;
+ }
+
+ auto tensor = model.tensors[name.data()];
+ if (ggml_nelements(tensor) != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+
+ if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
+ return false;
+ }
+
+ const size_t bpe = tensor->type == GGML_TYPE_I8 ? 1 : (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
+
+ if (nelements*bpe != ggml_nbytes(tensor)) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+ return false;
+ }
+
+ fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+
+ //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+ total_size += ggml_nbytes(tensor);
+ if (++n_tensors % 8 == 0) {
+ printf(".");
+ fflush(stdout);
+ }
+ }
+
+ printf(" done\n");
+
+ printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
+ }
+
+ fin.close();
+
+ return true;
+}
+
+// evaluate the transformer
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - n_past: the context size so far
+// - embd_inp: the embeddings of the tokens in the context
+// - embd_w: the predicted probabilities of the next token
+//
+// The GPT-J model requires about 16MB of memory per input token.
+//
+bool gptj_eval(
+ const gptj_model & model,
+ const int n_threads,
+ const int n_past,
+ const std::vector<gpt_vocab::id> & embd_inp,
+ std::vector<float> & embd_w,
+ size_t & mem_per_token) {
+ const int N = embd_inp.size();
+
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_head = hparams.n_head;
+ const int n_vocab = hparams.n_vocab;
+ const int n_rot = hparams.n_rot;
+
+ const int d_key = n_embd/n_head;
+
+ static size_t buf_size = 256u*1024*1024;
+ static void * buf = malloc(buf_size);
+
+ if (mem_per_token > 0 && mem_per_token*N > buf_size) {
+ const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
+ //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
+
+ // reallocate
+ buf_size = buf_size_new;
+ buf = realloc(buf, buf_size);
+ if (buf == nullptr) {
+ fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
+ return false;
+ }
+ }
+
+ struct ggml_init_params params = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
+
+ // wte
+ struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * cur;
+
+ // norm
+ {
+ cur = ggml_norm(ctx0, inpL);
+
+ // cur = ln_1_g*cur + ln_1_b
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
+ cur),
+ ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
+ }
+
+ struct ggml_tensor * inpSA = cur;
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_q_proj_w), cur);
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_k_proj_w), cur);
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_v_proj_w), cur);
+
+ // store key and value to memory
+ if (N >= 1) {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
+ }
+
+ // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ ggml_rope(ctx0,
+ ggml_cpy(ctx0,
+ Qcur,
+ ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
+ n_past, n_rot, 0),
+ 0, 2, 1, 3);
+
+ // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_rope(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ n_past, n_rot, 1),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
+ );
+
+ // KQ_masked = mask_past(KQ_scaled)
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+ // KQ = soft_max(KQ_masked)
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+ // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
+ struct ggml_tensor * V_trans =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 1, 2, 0, 3);
+
+ // KQV = transpose(V) * KQ_soft_max
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ cur = ggml_cpy(ctx0,
+ KQV_merged,
+ ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+ // projection (no bias)
+ cur = ggml_mul_mat(ctx0,
+ ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
+ cur);
+ }
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ // this is independent of the self-attention result, so it could be done in parallel to the self-attention
+ {
+ // note here we pass inpSA instead of cur
+ cur = ggml_mul_mat(ctx0,
+ ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
+ inpSA);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
+ cur);
+
+ // GELU activation
+ cur = ggml_gelu(ctx0, cur);
+
+ // projection
+ // cur = proj_w*cur + proj_b
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].c_mlp_proj_w_trans,
+ cur);
+
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
+ cur);
+ }
+
+ // self-attention + FF
+ cur = ggml_add(ctx0, cur, inpFF);
+
+ // input for next layer
+ inpL = ggml_add(ctx0, cur, inpL);
+ }
+
+ // norm
+ {
+ inpL = ggml_norm(ctx0, inpL);
+
+ // inpL = ln_f_g*inpL + ln_f_b
+ inpL = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.ln_f_g, inpL),
+ inpL),
+ ggml_repeat(ctx0, model.ln_f_b, inpL));
+ }
+
+ // lm_head
+ {
+ inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
+
+ inpL = ggml_add(ctx0,
+ ggml_repeat(ctx0, model.lmh_b, inpL),
+ inpL);
+ }
+
+ // to logits
+ inpL = ggml_soft_max(ctx0, inpL);
+
+ // run the computation
+ ggml_build_forward_expand(&gf, inpL);
+ ggml_graph_compute (ctx0, &gf);
+
+ //if (n_past%100 == 0) {
+ // ggml_graph_print (&gf);
+ // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
+ //}
+
+ //embd_w.resize(n_vocab*N);
+ //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+
+ // return result for just the last token
+ embd_w.resize(n_vocab);
+ memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
+
+ if (mem_per_token == 0) {
+ mem_per_token = ggml_used_mem(ctx0)/N;
+ }
+ //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+int main(int argc, char ** argv) {
+ const int64_t t_main_start_us = ggml_time_us();
+
+ gpt_params params;
+ params.model = "models/gpt-j-6B/ggml-model.bin";
+
+ if (gpt_params_parse(argc, argv, params) == false) {
+ return 1;
+ }
+
+ if (params.seed < 0) {
+ params.seed = time(NULL);
+ }
+
+ printf("%s: seed = %d\n", __func__, params.seed);
+
+ std::mt19937 rng(params.seed);
+ if (params.prompt.empty()) {
+ params.prompt = gpt_random_prompt(rng);
+ }
+
+ int64_t t_load_us = 0;
+
+ gpt_vocab vocab;
+ gptj_model model;
+
+ // load the model
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!gptj_model_load(params.model, model, vocab)) {
+ fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+ return 1;
+ }
+
+ t_load_us = ggml_time_us() - t_start_us;
+ }
+
+ int n_past = 0;
+
+ int64_t t_sample_us = 0;
+ int64_t t_predict_us = 0;
+
+ std::vector<float> embd_w;
+
+ // tokenize the prompt
+ std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
+
+ params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
+
+ printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
+ printf("\n");
+
+ std::vector<gpt_vocab::id> embd;
+
+ // determine the required inference memory per token:
+ size_t mem_per_token = 0;
+ gptj_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, embd_w, mem_per_token);
+
+ for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
+ // predict
+ if (embd.size() > 0) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!gptj_eval(model, params.n_threads, n_past, embd, embd_w, mem_per_token)) {
+ printf("Failed to predict\n");
+ return 1;
+ }
+
+ t_predict_us += ggml_time_us() - t_start_us;
+ }
+
+ n_past += embd.size();
+ embd.clear();
+
+ if (i >= embd_inp.size()) {
+ // sample next token
+ const int top_k = params.top_k;
+ const float top_p = params.top_p;
+ const float temp = params.temp;
+
+ const int n_vocab = model.hparams.n_vocab;
+
+ gpt_vocab::id id = 0;
+
+ {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ id = gpt_sample_top_k_top_p(vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, rng);
+
+ t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+
+ // add it to the context
+ embd.push_back(id);
+ } else {
+ // if here, it means we are still processing the input prompt
+ for (int k = i; k < embd_inp.size(); k++) {
+ embd.push_back(embd_inp[k]);
+ if (embd.size() > params.n_batch) {
+ break;
+ }
+ }
+ i += embd.size() - 1;
+ }
+
+ // display text
+ for (auto id : embd) {
+ printf("%s", vocab.id_to_token[id].c_str());
+ }
+ fflush(stdout);
+
+ // end of text token
+ if (embd.back() == 50256) {
+ break;
+ }
+ }
+
+ // report timing
+ {
+ const int64_t t_main_end_us = ggml_time_us();
+
+ printf("\n\n");
+ printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
+ printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
+ printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
+ printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
+ printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
+ }
+
+ ggml_free(model.ctx);
+
+ return 0;
+}
--- /dev/null
+#include "utils.h"
+
+#include <fstream>
+#include <regex>
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
+ for (int i = 1; i < argc; i++) {
+ std::string arg = argv[i];
+
+ if (arg == "-s" || arg == "--seed") {
+ params.seed = std::stoi(argv[++i]);
+ } else if (arg == "-t" || arg == "--threads") {
+ params.n_threads = std::stoi(argv[++i]);
+ } else if (arg == "-p" || arg == "--prompt") {
+ params.prompt = argv[++i];
+ } else if (arg == "-n" || arg == "--n_predict") {
+ params.n_predict = std::stoi(argv[++i]);
+ } else if (arg == "--top_k") {
+ params.top_k = std::stoi(argv[++i]);
+ } else if (arg == "--top_p") {
+ params.top_p = std::stof(argv[++i]);
+ } else if (arg == "--temp") {
+ params.temp = std::stof(argv[++i]);
+ } else if (arg == "-b" || arg == "--batch_size") {
+ params.n_batch = std::stoi(argv[++i]);
+ } else if (arg == "-m" || arg == "--model") {
+ params.model = argv[++i];
+ } else if (arg == "-h" || arg == "--help") {
+ gpt_print_usage(argc, argv, params);
+ exit(0);
+ } else {
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
+ gpt_print_usage(argc, argv, params);
+ exit(0);
+ }
+ }
+
+ return true;
+}
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
+ fprintf(stderr, "usage: %s [options]\n", argv[0]);
+ fprintf(stderr, "\n");
+ fprintf(stderr, "options:\n");
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
+ fprintf(stderr, " prompt to start generation with (default: random)\n");
+ fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
+ fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
+ fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
+ fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
+ fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
+ fprintf(stderr, " -m FNAME, --model FNAME\n");
+ fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
+ fprintf(stderr, "\n");
+}
+
+void replace(std::string & str, const std::string & needle, const std::string & replacement) {
+ size_t pos = 0;
+ while ((pos = str.find(needle, pos)) != std::string::npos) {
+ str.replace(pos, needle.length(), replacement);
+ pos += replacement.length();
+ }
+}
+
+// poor-man's JSON parsing
+std::map<std::string, int32_t> json_parse(const std::string & fname) {
+ std::map<std::string, int32_t> result;
+
+ // read file into string
+ std::string json;
+ {
+ std::ifstream ifs(fname);
+ if (!ifs) {
+ fprintf(stderr, "Failed to open %s\n", fname.c_str());
+ exit(1);
+ }
+
+ json = std::string((std::istreambuf_iterator<char>(ifs)),
+ (std::istreambuf_iterator<char>()));
+ }
+
+ if (json[0] != '{') {
+ return result;
+ }
+
+ // parse json
+ {
+ bool has_key = false;
+ bool in_token = false;
+
+ std::string str_key = "";
+ std::string str_val = "";
+
+ int n = json.size();
+ for (int i = 1; i < n; ++i) {
+ if (!in_token) {
+ if (json[i] == ' ') continue;
+ if (json[i] == '"') {
+ in_token = true;
+ continue;
+ }
+ } else {
+ if (json[i] == '\\' && i+1 < n) {
+ if (has_key == false) {
+ str_key += json[i];
+ } else {
+ str_val += json[i];
+ }
+ ++i;
+ } else if (json[i] == '"') {
+ if (has_key == false) {
+ has_key = true;
+ ++i;
+ while (json[i] == ' ') ++i;
+ ++i; // :
+ while (json[i] == ' ') ++i;
+ if (json[i] != '\"') {
+ while (json[i] != ',' && json[i] != '}') {
+ str_val += json[i++];
+ }
+ has_key = false;
+ } else {
+ in_token = true;
+ continue;
+ }
+ } else {
+ has_key = false;
+ }
+
+ ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
+ ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
+ ::replace(str_key, "\\\"", "\""); // \\\" -> "
+
+ try {
+ result[str_key] = std::stoi(str_val);
+ } catch (...) {
+ //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
+
+ }
+ str_key = "";
+ str_val = "";
+ in_token = false;
+ continue;
+ }
+ if (has_key == false) {
+ str_key += json[i];
+ } else {
+ str_val += json[i];
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+std::string gpt_random_prompt(std::mt19937 & rng) {
+ const int r = rng() % 10;
+ switch (r) {
+ case 0: return "So";
+ case 1: return "Once upon a time";
+ case 2: return "When";
+ case 3: return "The";
+ case 4: return "After";
+ case 5: return "If";
+ case 6: return "import";
+ case 7: return "He";
+ case 8: return "She";
+ case 9: return "They";
+ default: return "To";
+ }
+
+ return "The";
+}
+
+std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
+ std::vector<std::string> words;
+
+ // first split the text into words
+ {
+ std::string str = text;
+ std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
+
+ std::regex re(pat);
+ std::smatch m;
+
+ while (std::regex_search(str, m, re)) {
+ for (auto x : m) {
+ words.push_back(x);
+ }
+ str = m.suffix();
+ }
+ }
+
+ // find the longest tokens that form the words:
+ std::vector<gpt_vocab::id> tokens;
+ for (const auto & word : words) {
+ if (word.size() == 0) continue;
+
+ int i = 0;
+ int n = word.size();
+ while (i < n) {
+ int j = n;
+ while (j > i) {
+ auto it = vocab.token_to_id.find(word.substr(i, j-i));
+ if (it != vocab.token_to_id.end()) {
+ tokens.push_back(it->second);
+ i = j;
+ break;
+ }
+ --j;
+ }
+ if (i == n) {
+ break;
+ }
+ if (j == i) {
+ auto sub = word.substr(i, 1);
+ if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
+ tokens.push_back(vocab.token_to_id.at(sub));
+ } else {
+ fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
+ }
+ ++i;
+ }
+ }
+ }
+
+ return tokens;
+}
+
+bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
+ printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
+
+ vocab.token_to_id = ::json_parse(fname);
+
+ for (const auto & kv : vocab.token_to_id) {
+ vocab.id_to_token[kv.second] = kv.first;
+ }
+
+ printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
+
+ // print the vocabulary
+ //for (auto kv : vocab.token_to_id) {
+ // printf("'%s' -> %d\n", kv.first.data(), kv.second);
+ //}
+
+ return true;
+}
+
+gpt_vocab::id gpt_sample_top_k_top_p(
+ const gpt_vocab & vocab,
+ const float * logits,
+ int top_k,
+ double top_p,
+ double temp,
+ std::mt19937 & rng) {
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, gpt_vocab::id>> logits_id;
+ logits_id.reserve(n_logits);
+
+ for (int i = 0; i < n_logits; i++) {
+ logits_id.push_back(std::make_pair(logits[i], i));
+ }
+
+ // find the top K tokens
+ std::partial_sort(
+ logits_id.begin(),
+ logits_id.begin() + top_k, logits_id.end(),
+ [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ logits_id.resize(top_k);
+
+ // normalize
+ {
+ double sum = 0.0f;
+ for (int i = 0; i < (int)logits_id.size(); i++) {
+ sum += logits_id[i].first;
+ }
+
+ sum = 1.0/sum;
+ for (int i = 0; i < (int)logits_id.size(); i++) {
+ logits_id[i].first *= sum;
+ }
+ }
+
+ if (top_p < 1.0f) {
+ {
+ double cumsum = 0.0f;
+ for (int i = 0; i < top_k; i++) {
+ cumsum += logits_id[i].first;
+ if (cumsum >= top_p) {
+ logits_id.resize(i+1);
+ break;
+ }
+ }
+ }
+
+ // normalize again
+ {
+ double sum = 0.0f;
+ for (int i = 0; i < (int)logits_id.size(); i++) {
+ sum += logits_id[i].first;
+ }
+
+ sum = 1.0/sum;
+ for (int i = 0; i < (int)logits_id.size(); i++) {
+ logits_id[i].first *= sum;
+ }
+ }
+ }
+
+ //printf("\n");
+ //for (int i = 0; i < (int)logits_id.size(); i++) {
+ // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
+ //}
+ //exit(0);
+
+ // sample from the obtained distribution
+ std::vector<double> probs;
+ probs.reserve(logits_id.size());
+
+ for (int i = 0; i < (int) logits_id.size(); i++) {
+ probs.push_back(logits_id[i].first);
+ }
+
+ std::discrete_distribution<> dist(probs.begin(), probs.end());
+ int idx = dist(rng);
+
+ return logits_id[idx].second;
+}
--- /dev/null
+// Various helper functions and utilities
+
+#pragma once
+
+#include <string>
+#include <map>
+#include <vector>
+#include <random>
+#include <thread>
+
+//
+// CLI argument parsing
+//
+
+struct gpt_params {
+ int32_t seed = -1; // RNG seed
+ int32_t n_threads = std::min(8, (int32_t) std::thread::hardware_concurrency());
+ int32_t n_predict = 200; // new tokens to predict
+
+ // sampling parameters
+ int32_t top_k = 40;
+ float top_p = 0.9f;
+ float temp = 1.0f;
+
+ int32_t n_batch = 8; // batch size for prompt processing
+
+ std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
+ std::string prompt;
+};
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
+
+std::string gpt_random_prompt(std::mt19937 & rng);
+
+//
+// Vocab utils
+//
+
+struct gpt_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ std::map<token, id> token_to_id;
+ std::map<id, token> id_to_token;
+};
+
+void replace(std::string & str, const std::string & needle, const std::string & replacement);
+
+// poor-man's JSON parsing
+std::map<std::string, int32_t> json_parse(const std::string & fname);
+
+// split text into tokens
+//
+// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
+//
+// Regex (Python):
+// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
+//
+// Regex (C++):
+// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
+//
+std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
+
+// load the tokens from encoder.json
+bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
+
+// sample next token given probabilities for each embedding
+//
+// - consider only the top K tokens
+// - from them, consider only the top tokens with cumulative probability > P
+//
+// TODO: not sure if this implementation is correct
+// TODO: temperature is not implemented
+//
+gpt_vocab::id gpt_sample_top_k_top_p(
+ const gpt_vocab & vocab,
+ const float * logits,
+ int top_k,
+ double top_p,
+ double temp,
+ std::mt19937 & rng);
+
--- /dev/null
+#pragma once
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stdint.h>
+#include <stddef.h>
+#include <stdbool.h>
+
+#define GGML_MAX_DIMS 4
+#define GGML_MAX_NODES 4096
+#define GGML_MAX_PARAMS 16
+#define GGML_MAX_CONTEXTS 16
+
+#ifdef __ARM_NEON
+// we use the built-in 16-bit float type
+typedef __fp16 ggml_fp16_t;
+#else
+typedef uint16_t ggml_fp16_t;
+#endif
+
+float ggml_fp16_to_fp32(ggml_fp16_t x);
+ggml_fp16_t ggml_fp32_to_fp16(float x);
+
+struct ggml_object;
+struct ggml_context;
+
+enum ggml_type {
+ GGML_TYPE_I8,
+ GGML_TYPE_I16,
+ GGML_TYPE_I32,
+ GGML_TYPE_F16,
+ GGML_TYPE_F32,
+ GGML_TYPE_COUNT,
+};
+
+enum ggml_op {
+ GGML_OP_NONE = 0,
+
+ GGML_OP_DUP,
+ GGML_OP_ADD,
+ GGML_OP_SUB,
+ GGML_OP_MUL,
+ GGML_OP_DIV,
+ GGML_OP_SQR,
+ GGML_OP_SQRT,
+ GGML_OP_SUM,
+ GGML_OP_MEAN,
+ GGML_OP_REPEAT,
+ GGML_OP_ABS,
+ GGML_OP_SGN,
+ GGML_OP_NEG,
+ GGML_OP_STEP,
+ GGML_OP_RELU,
+ GGML_OP_GELU,
+ GGML_OP_NORM, // normalize
+
+ GGML_OP_MUL_MAT,
+
+ GGML_OP_SCALE,
+ GGML_OP_CPY,
+ GGML_OP_RESHAPE,
+ GGML_OP_VIEW,
+ GGML_OP_PERMUTE,
+ GGML_OP_TRANSPOSE,
+ GGML_OP_GET_ROWS,
+ GGML_OP_DIAG_MASK_INF,
+ GGML_OP_SOFT_MAX,
+ GGML_OP_ROPE,
+
+ GGML_OP_COUNT,
+};
+
+// n-dimensional tensor
+struct ggml_tensor {
+ enum ggml_type type;
+
+ int n_dims;
+ int ne[GGML_MAX_DIMS]; // number of elements
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
+ // nb[0] = sizeof(type)
+ // nb[1] = nb[0] * ne[0] + padding
+ // nb[i] = nb[i-1] * ne[i-1]
+
+ // compute data
+ enum ggml_op op;
+
+ bool is_param;
+
+ struct ggml_tensor * grad;
+ struct ggml_tensor * src0;
+ struct ggml_tensor * src1;
+
+ // thread scheduling
+ int n_tasks;
+
+ // performance
+ int perf_runs;
+ int64_t perf_cycles;
+ int64_t perf_time_us;
+
+ void * data;
+ char pad[8];
+};
+
+// computation graph
+struct ggml_cgraph {
+ int n_nodes;
+ int n_leafs;
+ int n_threads;
+
+ size_t work_size;
+ struct ggml_tensor * work;
+
+ struct ggml_tensor * nodes[GGML_MAX_NODES];
+ struct ggml_tensor * grads[GGML_MAX_NODES];
+ struct ggml_tensor * leafs[GGML_MAX_NODES];
+
+ // performance
+ int perf_runs;
+ int64_t perf_cycles;
+ int64_t perf_time_us;
+};
+
+struct ggml_init_params {
+ // memory pool
+ size_t mem_size; // bytes
+ void * mem_buffer; // if NULL, memory will be allocated internally
+};
+
+int64_t ggml_time_ms(void);
+int64_t ggml_time_us(void);
+int64_t ggml_cycles(void);
+int64_t ggml_cycles_per_ms(void);
+
+void ggml_print_object (const struct ggml_object * obj);
+void ggml_print_objects(const struct ggml_context * ctx);
+
+int ggml_nelements(const struct ggml_tensor * tensor);
+size_t ggml_nbytes (const struct ggml_tensor * tensor);
+
+size_t ggml_type_size (enum ggml_type type);
+size_t ggml_element_size(const struct ggml_tensor * tensor);
+
+struct ggml_context * ggml_init(struct ggml_init_params params);
+void ggml_free(struct ggml_context * ctx);
+
+size_t ggml_used_mem(const struct ggml_context * ctx);
+
+struct ggml_tensor * ggml_new_tensor(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int *ne);
+
+struct ggml_tensor * ggml_new_tensor_1d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0);
+
+struct ggml_tensor * ggml_new_tensor_2d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1);
+
+struct ggml_tensor * ggml_new_tensor_3d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1,
+ int ne2);
+
+struct ggml_tensor * ggml_new_tensor_4d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3);
+
+struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
+
+struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
+struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
+
+struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
+struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
+
+float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
+void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
+
+ void * ggml_get_data (const struct ggml_tensor * tensor);
+float * ggml_get_data_f32(const struct ggml_tensor * tensor);
+
+//
+// operations on tensors with backpropagation
+//
+
+struct ggml_tensor * ggml_dup(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_add(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+struct ggml_tensor * ggml_sub(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+struct ggml_tensor * ggml_mul(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+struct ggml_tensor * ggml_div(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+struct ggml_tensor * ggml_sqr(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_sqrt(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// return scalar
+// TODO: compute sum along rows
+struct ggml_tensor * ggml_sum(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// mean along rows
+struct ggml_tensor * ggml_mean(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// if a is the same shape as b, and a is not parameter, return a
+// otherwise, return a new tensor: repeat(a) to fit in b
+struct ggml_tensor * ggml_repeat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+struct ggml_tensor * ggml_abs(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_sgn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_neg(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_step(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// TODO: double-check this computation is correct
+struct ggml_tensor * ggml_gelu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// normalize along rows
+// TODO: eps is hardcoded to 1e-5 for now
+struct ggml_tensor * ggml_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// A: m rows, n columns
+// B: p rows, n columns (i.e. we transpose it internally)
+// result is m columns, p rows
+struct ggml_tensor * ggml_mul_mat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+//
+// operations on tensors without backpropagation
+//
+
+// in-place, returns view(a)
+struct ggml_tensor * ggml_scale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+// a -> b, return view(b)
+struct ggml_tensor * ggml_cpy(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+// return view(a), b specifies the new shape
+// TODO: when we start computing gradient, make a copy instead of view
+struct ggml_tensor * ggml_reshape(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+// return view(a)
+// TODO: when we start computing gradient, make a copy instead of view
+struct ggml_tensor * ggml_reshape_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1);
+
+// return view(a)
+// TODO: when we start computing gradient, make a copy instead of view
+struct ggml_tensor * ggml_reshape_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ int ne2);
+
+// offset in bytes
+struct ggml_tensor * ggml_view_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ size_t offset);
+
+struct ggml_tensor * ggml_view_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ size_t nb1, // row stride in bytes
+ size_t offset);
+
+struct ggml_tensor * ggml_permute(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int axis0,
+ int axis1,
+ int axis2,
+ int axis3);
+
+// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
+struct ggml_tensor * ggml_transpose(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+struct ggml_tensor * ggml_get_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b);
+
+// set elements above the diagonal to -INF
+// in-place, returns view(a)
+struct ggml_tensor * ggml_diag_mask_inf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past);
+
+// in-place, returns view(a)
+struct ggml_tensor * ggml_soft_max(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+// rotary position embedding
+// in-place, returns view(a)
+// if mode == 1, skip n_past elements
+// TODO: avoid creating a new tensor every time
+struct ggml_tensor * ggml_rope(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_dims,
+ int mode);
+
+//
+// automatic differentiation
+//
+
+void ggml_set_param(
+ struct ggml_context * ctx,
+ struct ggml_tensor * tensor);
+
+void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
+
+struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
+struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
+
+void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
+void ggml_graph_reset (struct ggml_cgraph * cgraph);
+
+// print info and performance information for the graph
+void ggml_graph_print(const struct ggml_cgraph * cgraph);
+
+// dump the graph into a file using the dot format
+void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
+
+//
+// optimization
+//
+
+// optimization methods
+enum ggml_opt_type {
+ GGML_OPT_ADAM,
+ GGML_OPT_LBFGS,
+};
+
+// linesearch methods
+enum ggml_linesearch {
+ GGML_LINESEARCH_DEFAULT = 1,
+
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
+};
+
+// optimization return values
+enum ggml_opt_result {
+ GGML_OPT_OK = 0,
+ GGML_OPT_DID_NOT_CONVERGE,
+ GGML_OPT_NO_CONTEXT,
+ GGML_OPT_INVALID_WOLFE,
+ GGML_OPT_FAIL,
+
+ GGML_LINESEARCH_FAIL = -128,
+ GGML_LINESEARCH_MINIMUM_STEP,
+ GGML_LINESEARCH_MAXIMUM_STEP,
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
+ GGML_LINESEARCH_INVALID_PARAMETERS,
+};
+
+// optimization parameters
+//
+// see ggml.c (ggml_opt_default_params) for default values
+//
+struct ggml_opt_params {
+ enum ggml_opt_type type;
+
+ int n_threads;
+
+ // delta-based convergence test
+ //
+ // if past == 0 - disabled
+ // if past > 0:
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
+ //
+ int past;
+ float delta;
+
+ // maximum number of iterations without improvement
+ //
+ // if 0 - disabled
+ // if > 0:
+ // assume convergence if no cost improvement in this number of iterations
+ //
+ int max_no_improvement;
+
+ bool print_forward_graph;
+ bool print_backward_graph;
+
+ union {
+ // ADAM parameters
+ struct {
+ int n_iter;
+
+ float alpha; // learning rate
+ float beta1;
+ float beta2;
+ float eps; // epsilon for numerical stability
+ float eps_f; // epsilon for convergence test
+ float eps_g; // epsilon for convergence test
+ } adam;
+
+ // LBFGS parameters
+ struct {
+ int m; // number of corrections to approximate the inv. Hessian
+ int n_iter;
+ int max_linesearch;
+
+ float eps; // convergence tolerance
+ float ftol; // line search tolerance
+ float wolfe;
+ float min_step;
+ float max_step;
+
+ enum ggml_linesearch linesearch;
+ } lbfgs;
+ };
+};
+
+struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
+
+// optimize the function defined by the tensor f
+enum ggml_opt_result ggml_opt(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f);
+
+#ifdef __cplusplus
+}
+#endif
--- /dev/null
+if (GGML_ALL_WARNINGS)
+ if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_ID MATCHES "Clang")
+ #set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wextra")
+ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
+ -Wall \
+ -Wextra \
+ -Wpedantic \
+ -Wshadow \
+ -Wcast-qual \
+ -Wstrict-prototypes \
+ -Wpointer-arith \
+ ")
+ else()
+ # todo : windows
+ endif()
+endif()
+
+# compiler flags
+
+set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
+#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
+
+message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
+
+if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
+ message(STATUS "ARM detected")
+ #set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mcpu=apple-m1")
+else()
+ message(STATUS "x86 detected")
+ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx -mavx2 -mfma -mf16c")
+endif()
+
+
+# ggml
+
+set(TARGET ggml)
+
+# on APPLE - include Accelerate framework
+#if (APPLE)
+# find_library(ACCELERATE_FRAMEWORK Accelerate)
+# if (ACCELERATE_FRAMEWORK)
+# message(STATUS "Accelerate framework found")
+#
+# set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
+# set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
+# else()
+# message(WARNING "Accelerate framework not found")
+# endif()
+#endif()
+
+add_library(${TARGET}
+ ggml.c
+ )
+
+target_include_directories(${TARGET} PUBLIC
+ .
+ ../include
+ )
+
+target_link_libraries(${TARGET} PUBLIC m ${GGML_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
+
+if (BUILD_SHARED_LIBS)
+ target_link_libraries(${TARGET} PUBLIC
+ ${CMAKE_DL_LIBS}
+ )
+
+ target_compile_definitions(${TARGET} PUBLIC
+ GGML_SHARED
+ )
+endif()
+
+target_compile_definitions(${TARGET} PUBLIC
+ ${GGML_EXTRA_FLAGS}
+ )
+
+if (MINGW)
+ target_link_libraries(${TARGET} PUBLIC
+ stdc++
+ )
+endif()
+
+install(TARGETS ${TARGET}
+ LIBRARY DESTINATION lib
+ ARCHIVE DESTINATION lib/static
+ )
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <assert.h>
+#include <time.h>
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdatomic.h>
+
+#include <pthread.h>
+
+#define GGML_DEBUG 0
+
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+#define GGML_MEM_ALIGN 16
+
+#define UNUSED(x) (void)(x)
+#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
+
+// floating point type used to accumulate sums
+typedef double ggml_float;
+
+// 16-bit float
+// on Arm, we use __fp16
+// on x86, we use uint16_t
+#ifdef __ARM_NEON
+
+// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
+//
+// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
+//
+#include <arm_neon.h>
+
+float ggml_fp16_to_fp32(ggml_fp16_t x) {
+ return x;
+}
+
+ggml_fp16_t ggml_fp32_to_fp16(float x) {
+ return x;
+}
+
+#else
+
+#include <immintrin.h>
+
+static inline float fp32_from_bits(uint32_t w) {
+ union {
+ uint32_t as_bits;
+ float as_value;
+ } fp32 = { w };
+ return fp32.as_value;
+}
+
+static inline uint32_t fp32_to_bits(float f) {
+ union {
+ float as_value;
+ uint32_t as_bits;
+ } fp32 = { f };
+ return fp32.as_bits;
+}
+
+float ggml_fp16_to_fp32(ggml_fp16_t h) {
+ const uint32_t w = (uint32_t) h << 16;
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ const uint32_t two_w = w + w;
+
+ const uint32_t exp_offset = UINT32_C(0xE0) << 23;
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float exp_scale = 0x1.0p-112f;
+#else
+ const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
+#endif
+ const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
+
+ const uint32_t magic_mask = UINT32_C(126) << 23;
+ const float magic_bias = 0.5f;
+ const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
+
+ const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
+ const uint32_t result = sign |
+ (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
+ return fp32_from_bits(result);
+}
+
+ggml_fp16_t ggml_fp32_to_fp16(float f) {
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float scale_to_inf = 0x1.0p+112f;
+ const float scale_to_zero = 0x1.0p-110f;
+#else
+ const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
+ const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
+#endif
+ float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
+
+ const uint32_t w = fp32_to_bits(f);
+ const uint32_t shl1_w = w + w;
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ uint32_t bias = shl1_w & UINT32_C(0xFF000000);
+ if (bias < UINT32_C(0x71000000)) {
+ bias = UINT32_C(0x71000000);
+ }
+
+ base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
+ const uint32_t bits = fp32_to_bits(base);
+ const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
+ const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
+ const uint32_t nonsign = exp_bits + mantissa_bits;
+ return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
+}
+#endif
+
+//
+// timing
+//
+
+// TODO: need to be able to disable these in performance critical code since they make slow system calls
+int64_t ggml_time_ms(void) {
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
+}
+
+int64_t ggml_time_us(void) {
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
+}
+
+int64_t ggml_cycles(void) {
+ return clock();
+}
+
+int64_t ggml_cycles_per_ms(void) {
+ return CLOCKS_PER_SEC/1000;
+}
+
+//
+// cache line
+//
+
+#if defined(__cpp_lib_hardware_interference_size)
+ const size_t CACHE_LINE_SIZE = hardware_destructive_interference_size;
+#else
+ const size_t CACHE_LINE_SIZE = 64;
+#endif
+
+const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
+
+//
+// fundamental operations
+//
+
+inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
+inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
+inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
+inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
+inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
+inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
+inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
+inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
+inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
+
+inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
+ for (int i = 0; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+}
+
+inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
+ ggml_float sum = 0.0;
+ for (int i = 0; i < n; ++i) {
+ sum += x[i]*y[i];
+ }
+ *s = sum;
+}
+
+inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
+ ggml_float sumf = 0.0;
+#ifdef __ARM_NEON
+ const int n64 = 64*(n/64);
+
+ float16x8_t sum0 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum1 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum2 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum3 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum4 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum5 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum6 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum7 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+
+ float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
+ float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+
+ for (int i = 0; i < n64; i += 64) {
+ x0 = vld1q_f16(x + i + 0 );
+ x1 = vld1q_f16(x + i + 8 );
+ x2 = vld1q_f16(x + i + 16);
+ x3 = vld1q_f16(x + i + 24);
+ x4 = vld1q_f16(x + i + 32);
+ x5 = vld1q_f16(x + i + 40);
+ x6 = vld1q_f16(x + i + 48);
+ x7 = vld1q_f16(x + i + 56);
+
+ y0 = vld1q_f16(y + i + 0 );
+ y1 = vld1q_f16(y + i + 8 );
+ y2 = vld1q_f16(y + i + 16);
+ y3 = vld1q_f16(y + i + 24);
+ y4 = vld1q_f16(y + i + 32);
+ y5 = vld1q_f16(y + i + 40);
+ y6 = vld1q_f16(y + i + 48);
+ y7 = vld1q_f16(y + i + 56);
+
+ sum0 = vfmaq_f16(sum0, x0, y0);
+ sum1 = vfmaq_f16(sum1, x1, y1);
+ sum2 = vfmaq_f16(sum2, x2, y2);
+ sum3 = vfmaq_f16(sum3, x3, y3);
+ sum4 = vfmaq_f16(sum4, x4, y4);
+ sum5 = vfmaq_f16(sum5, x5, y5);
+ sum6 = vfmaq_f16(sum6, x6, y6);
+ sum7 = vfmaq_f16(sum7, x7, y7);
+ }
+
+ // TODO: F16 - better way to reduce this ?
+ float16x8_t sum = vaddq_f16(sum0, sum1);
+
+ sum = vaddq_f16(sum, sum2);
+ sum = vaddq_f16(sum, sum3);
+ sum = vaddq_f16(sum, sum4);
+ sum = vaddq_f16(sum, sum5);
+ sum = vaddq_f16(sum, sum6);
+ sum = vaddq_f16(sum, sum7);
+
+ sumf += sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
+
+ // I think this somehow makes the inference worse .. not sure ?
+ //sum0 = vaddq_f16(sum0, sum1);
+ //sum2 = vaddq_f16(sum2, sum3);
+ //sum4 = vaddq_f16(sum4, sum5);
+ //sum6 = vaddq_f16(sum6, sum7);
+
+ //sum0 = vaddq_f16(sum0, sum2);
+ //sum4 = vaddq_f16(sum4, sum6);
+
+ //sum0 = vaddq_f16(sum0, sum4);
+
+ //for (int i = 0; i < 8; ++i) {
+ // sumf += sum0[i];
+ //}
+
+ // leftovers
+ for (int i = n64; i < n; ++i) {
+ sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
+ }
+#else
+ // AVX 256-bit (unroll 4)
+ const int n32 = 32*(n/32);
+
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+ __m256 sum2 = _mm256_setzero_ps();
+ __m256 sum3 = _mm256_setzero_ps();
+
+ __m256 x0, x1, x2, x3;
+ __m256 y0, y1, y2, y3;
+
+ for (int i = 0; i < n32; i += 32) {
+ x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 )));
+ x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 )));
+ x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16)));
+ x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24)));
+
+ y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 )));
+ y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 )));
+ y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16)));
+ y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24)));
+
+ sum0 = _mm256_fmadd_ps(x0, y0, sum0);
+ sum1 = _mm256_fmadd_ps(x1, y1, sum1);
+ sum2 = _mm256_fmadd_ps(x2, y2, sum2);
+ sum3 = _mm256_fmadd_ps(x3, y3, sum3);
+ }
+
+ const __m256 sum01 = _mm256_add_ps(sum0, sum1);
+ const __m256 sum23 = _mm256_add_ps(sum2, sum3);
+ const __m256 sum0123 = _mm256_add_ps(sum01, sum23);
+
+ const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0123), _mm256_extractf128_ps(sum0123, 1));
+ const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2));
+
+ sumf = _mm_cvtss_f32(r1);
+
+ // leftovers
+ for (int i = n32; i < n; ++i) {
+ sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
+ }
+#endif
+
+ *s = sumf;
+}
+
+inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
+#ifdef __ARM_NEON
+ // NEON 128-bit
+ const int n64 = 64*(n/64);
+
+ const float16x8_t v8 = vdupq_n_f16(v);
+
+ float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
+ float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+
+ for (int i = 0; i < n64; i += 64) {
+ y0 = vld1q_f16(y + i + 0 );
+ y1 = vld1q_f16(y + i + 8 );
+ y2 = vld1q_f16(y + i + 16);
+ y3 = vld1q_f16(y + i + 24);
+ y4 = vld1q_f16(y + i + 32);
+ y5 = vld1q_f16(y + i + 40);
+ y6 = vld1q_f16(y + i + 48);
+ y7 = vld1q_f16(y + i + 56);
+
+ x0 = vld1q_f16(x + i + 0 );
+ x1 = vld1q_f16(x + i + 8 );
+ x2 = vld1q_f16(x + i + 16);
+ x3 = vld1q_f16(x + i + 24);
+ x4 = vld1q_f16(x + i + 32);
+ x5 = vld1q_f16(x + i + 40);
+ x6 = vld1q_f16(x + i + 48);
+ x7 = vld1q_f16(x + i + 56);
+
+ y0 = vfmaq_f16(y0, x0, v8);
+ y1 = vfmaq_f16(y1, x1, v8);
+ y2 = vfmaq_f16(y2, x2, v8);
+ y3 = vfmaq_f16(y3, x3, v8);
+ y4 = vfmaq_f16(y4, x4, v8);
+ y5 = vfmaq_f16(y5, x5, v8);
+ y6 = vfmaq_f16(y6, x6, v8);
+ y7 = vfmaq_f16(y7, x7, v8);
+
+ vst1q_f16(y + i + 0 , y0);
+ vst1q_f16(y + i + 8 , y1);
+ vst1q_f16(y + i + 16, y2);
+ vst1q_f16(y + i + 24, y3);
+ vst1q_f16(y + i + 32, y4);
+ vst1q_f16(y + i + 40, y5);
+ vst1q_f16(y + i + 48, y6);
+ vst1q_f16(y + i + 56, y7);
+ }
+
+ // leftovers
+ for (int i = n64; i < n; ++i) {
+ y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
+ }
+#else
+ // AVX 256-bit
+ const int n32 = 32*(n/32);
+
+ const __m256 v8 = _mm256_set1_ps(v);
+
+ __m256 x0, x1, x2, x3;
+ __m256 y0, y1, y2, y3;
+
+ for (int i = 0; i < n32; i += 32) {
+ y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 )));
+ y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 )));
+ y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16)));
+ y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24)));
+
+ x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 )));
+ x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 )));
+ x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16)));
+ x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24)));
+
+ y0 = _mm256_fmadd_ps(x0, v8, y0);
+ y1 = _mm256_fmadd_ps(x1, v8, y1);
+ y2 = _mm256_fmadd_ps(x2, v8, y2);
+ y3 = _mm256_fmadd_ps(x3, v8, y3);
+
+ _mm_storeu_si128((__m128i*)(y + i + 0 ), _mm256_cvtps_ph(y0, 0));
+ _mm_storeu_si128((__m128i*)(y + i + 8 ), _mm256_cvtps_ph(y1, 0));
+ _mm_storeu_si128((__m128i*)(y + i + 16), _mm256_cvtps_ph(y2, 0));
+ _mm_storeu_si128((__m128i*)(y + i + 24), _mm256_cvtps_ph(y3, 0));
+ }
+
+ // leftovers
+ for (int i = n32; i < n; ++i) {
+ y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
+ }
+#endif
+}
+
+
+inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
+inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
+inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
+inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
+inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
+inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
+inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
+inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
+
+const ggml_float GELU_COEF_A = 0.044715;
+const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
+
+inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) {
+ for (int i = 0; i < n; ++i) {
+ //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i])));
+ //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
+ const ggml_float xx = x[i];
+ y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx)));
+ }
+}
+
+inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; }
+inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
+
+//
+// logging
+//
+
+#if (GGML_DEBUG >= 1)
+#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG(...)
+#endif
+
+#if (GGML_DEBUG >= 5)
+#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_5(...)
+#endif
+
+#if (GGML_DEBUG >= 10)
+#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_10(...)
+#endif
+
+#define GGML_PRINT(...) printf(__VA_ARGS__)
+
+//
+// data types
+//
+
+const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
+ sizeof(int8_t ),
+ sizeof(int16_t),
+ sizeof(int32_t),
+ sizeof(ggml_fp16_t),
+ sizeof(float ),
+};
+
+const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
+ "NONE",
+
+ "DUP",
+ "ADD",
+ "SUB",
+ "MUL",
+ "DIV",
+ "SQR",
+ "SQRT",
+ "SUM",
+ "MEAN",
+ "REPEAT",
+ "ABS",
+ "SGN",
+ "NEG",
+ "STEP",
+ "RELU",
+ "GELU",
+ "NORM",
+
+ "MUL_MAT",
+
+ "SCALE",
+ "CPY",
+ "RESHAPE",
+ "VIEW",
+ "PERMUTE",
+ "TRANSPOSE",
+ "GET_ROWS",
+ "DIAG_MASK_INF",
+ "SOFT_MAX",
+ "ROPE",
+};
+
+const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
+ "none",
+
+ "x",
+ "x+y",
+ "x-y",
+ "x*y",
+ "x/y",
+ "x^2",
+ "√x",
+ "Σx",
+ "Σx/n",
+ "repeat(x)",
+ "abs(x)",
+ "sgn(x)",
+ "-x",
+ "step(x)",
+ "relu(x)",
+ "gelu(x)",
+ "norm(x)",
+
+ "X*Y",
+
+ "x*v",
+ "x-\\>y",
+ "reshape(x)",
+ "view(x)",
+ "permute(x)",
+ "transpose(x)",
+ "get_rows(x)",
+ "diag_mask_inf(x)",
+ "soft_max(x)",
+ "rope(x)",
+};
+
+//
+// ggml object
+//
+
+struct ggml_object {
+ size_t offset;
+ size_t size;
+
+ struct ggml_object * next;
+
+ char padding[8];
+};
+
+const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
+
+static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
+static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
+
+//
+// ggml context
+//
+
+struct ggml_context {
+ size_t mem_size;
+ void * mem_buffer;
+ bool mem_buffer_owned;
+
+ int n_objects;
+
+ struct ggml_object * objects_begin;
+ struct ggml_object * objects_end;
+};
+
+struct ggml_context_container {
+ bool used;
+
+ struct ggml_context context;
+};
+
+//
+// compute types
+//
+
+enum ggml_task_type {
+ GGML_TASK_INIT = 0,
+ GGML_TASK_COMPUTE,
+ GGML_TASK_FINALIZE,
+};
+
+struct ggml_compute_params {
+ enum ggml_task_type type;
+
+ int ith, nth;
+
+ // work buffer for all threads
+ size_t wsize;
+ void * wdata;
+};
+
+//
+// ggml state
+//
+
+struct ggml_state {
+ struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
+};
+
+// global state
+struct ggml_state g_state;
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_print_object(const struct ggml_object * obj) {
+ GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
+ obj->offset, obj->size, (const void *) obj->next);
+}
+
+void ggml_print_objects(const struct ggml_context * ctx) {
+ struct ggml_object * obj = ctx->objects_begin;
+
+ GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
+
+ while (obj != NULL) {
+ ggml_print_object(obj);
+ obj = obj->next;
+ }
+
+ GGML_PRINT("%s: --- end ---\n", __func__);
+}
+
+int ggml_nelements(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
+}
+
+int ggml_nrows(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
+}
+
+size_t ggml_nbytes(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type];
+}
+
+size_t ggml_type_size(enum ggml_type type) {
+ return GGML_TYPE_SIZE[type];
+}
+
+size_t ggml_element_size(const struct ggml_tensor * tensor) {
+ return GGML_TYPE_SIZE[tensor->type];
+}
+
+bool ggml_is_scalar(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_is_vector(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_is_matrix(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t0->ne[0] == t1->ne[0]) &&
+ (t0->ne[2] == t1->ne[2]) &&
+ (t0->ne[3] == t1->ne[3]);
+}
+
+bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
+ tensor->nb[1] == tensor->nb[0]*tensor->ne[0] &&
+ tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
+ tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
+}
+
+bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
+ tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
+ tensor->nb[3] == tensor->nb[2]*tensor->ne[2];;
+}
+
+bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t0->ne[0] == t1->ne[0] ) &&
+ (t0->ne[1] == t1->ne[1] ) &&
+ (t0->ne[2] == t1->ne[2] ) &&
+ (t0->ne[3] == t1->ne[3] );
+}
+
+// check if t1 can be represented as a repeatition of t0
+bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t1->ne[0]%t0->ne[0] == 0) &&
+ (t1->ne[1]%t0->ne[1] == 0) &&
+ (t1->ne[2]%t0->ne[2] == 0) &&
+ (t1->ne[3]%t0->ne[3] == 0);
+}
+
+// assert that pointer is aligned to GGML_MEM_ALIGN
+#define ggml_assert_aligned(ptr) \
+ assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
+
+////////////////////////////////////////////////////////////////////////////////
+
+struct ggml_context * ggml_init(struct ggml_init_params params) {
+ // find non-used context in g_state
+ struct ggml_context * ctx = NULL;
+
+ static bool first_time = true;
+ if (first_time) {
+ for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
+ g_state.contexts[i].used = false;
+ }
+ first_time = false;
+ }
+
+ for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
+ if (!g_state.contexts[i].used) {
+ g_state.contexts[i].used = true;
+ ctx = &g_state.contexts[i].context;
+
+ GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
+ break;
+ }
+ }
+
+ if (ctx == NULL) {
+ GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found");
+ return NULL;
+ }
+
+ *ctx = (struct ggml_context) {
+ .mem_size = params.mem_size,
+ .mem_buffer = params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
+ .mem_buffer_owned = params.mem_buffer ? false : true,
+ .n_objects = 0,
+ .objects_begin = NULL,
+ .objects_end = NULL,
+ };
+
+ ggml_assert_aligned(ctx->mem_buffer);
+
+ return ctx;
+}
+
+void ggml_free(struct ggml_context * ctx) {
+ for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
+ if (&g_state.contexts[i].context == ctx) {
+ g_state.contexts[i].used = false;
+
+ GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n",
+ i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
+
+ if (ctx->mem_buffer_owned) {
+ free(ctx->mem_buffer);
+ }
+
+ return;
+ }
+ }
+
+ GGML_PRINT_DEBUG("%s: context not found\n", __func__);
+}
+
+size_t ggml_used_mem(const struct ggml_context * ctx) {
+ return ctx->objects_end->offset + ctx->objects_end->size;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+struct ggml_tensor * ggml_new_tensor_impl(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int* ne,
+ void* data) {
+ // always insert objects at the end of the context's memory pool
+ struct ggml_object * obj_cur = ctx->objects_end;
+
+ const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset;
+ const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
+ const size_t cur_end = cur_offset + cur_size;
+
+ size_t size_needed = 0;
+
+ if (data == NULL) {
+ size_needed += GGML_TYPE_SIZE[type];
+ for (int i = 0; i < n_dims; i++) {
+ size_needed *= ne[i];
+ }
+ // align to GGML_MEM_ALIGN
+ size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
+
+ }
+ size_needed += sizeof(struct ggml_tensor);
+
+ if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
+ GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__);
+ assert(false);
+ return NULL;
+ }
+
+ char * const mem_buffer = ctx->mem_buffer;
+
+ struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
+
+ *obj_new = (struct ggml_object) {
+ .offset = cur_end + GGML_OBJECT_SIZE,
+ .size = size_needed,
+ .next = NULL,
+ };
+
+ if (obj_cur != NULL) {
+ obj_cur->next = obj_new;
+ } else {
+ // this is the first object in this context
+ ctx->objects_begin = obj_new;
+ }
+
+ ctx->objects_end = obj_new;
+
+ //GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end);
+
+ struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset);
+
+ ggml_assert_aligned(result);
+
+ *result = (struct ggml_tensor) {
+ /*.type =*/ type,
+ /*.n_dims =*/ n_dims,
+ /*.ne =*/ { 1, 1, 1, 1 },
+ /*.nb =*/ { 0, 0, 0, 0 },
+ /*.op =*/ GGML_OP_NONE,
+ /*.is_param =*/ false,
+ /*.grad =*/ NULL,
+ /*.src0 =*/ NULL,
+ /*.src1 =*/ NULL,
+ /*.n_tasks =*/ 0,
+ /*.perf_runs =*/ 0,
+ /*.perf_cycles =*/ 0,
+ /*.perf_time_us =*/ 0,
+ /*.data =*/ data == NULL ? (void *)(result + 1) : data,
+ /*.pad =*/ { 0 },
+ };
+
+ ggml_assert_aligned(result->data);
+
+ for (int i = 0; i < n_dims; i++) {
+ result->ne[i] = ne[i];
+ }
+
+ result->nb[0] = GGML_TYPE_SIZE[type];
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
+ }
+
+ ctx->n_objects++;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_new_tensor(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int* ne) {
+ return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
+}
+
+struct ggml_tensor * ggml_new_tensor_1d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0) {
+ return ggml_new_tensor(ctx, type, 1, &ne0);
+}
+
+struct ggml_tensor * ggml_new_tensor_2d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1) {
+ const int ne[2] = { ne0, ne1 };
+ return ggml_new_tensor(ctx, type, 2, ne);
+}
+
+struct ggml_tensor * ggml_new_tensor_3d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1,
+ int ne2) {
+ const int ne[3] = { ne0, ne1, ne2 };
+ return ggml_new_tensor(ctx, type, 3, ne);
+}
+
+struct ggml_tensor * ggml_new_tensor_4d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3) {
+ const int ne[4] = { ne0, ne1, ne2, ne3 };
+ return ggml_new_tensor(ctx, type, 4, ne);
+}
+
+struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+
+ ggml_set_f32(result, value);
+
+ return result;
+}
+
+struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
+ return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
+}
+
+struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
+ memset(tensor->data, 0, ggml_nbytes(tensor));
+ return tensor;
+}
+
+struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
+
+ char * const data = tensor->data;
+
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(false); // TODO: implement
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+
+ return tensor;
+}
+
+float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ return ((int8_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ return ((int16_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ return ((int32_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(false); // TODO: implement
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ return ((float *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+
+ assert(false);
+ return 0.0f;
+}
+
+void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(false); // TODO: implement
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ ((float *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+void * ggml_get_data(const struct ggml_tensor * tensor) {
+ return tensor->data;
+}
+
+float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
+ assert(tensor->type == GGML_TYPE_F32);
+ return (float *)(tensor->data);
+}
+
+struct ggml_tensor * ggml_view_tensor(
+ struct ggml_context * ctx,
+ const struct ggml_tensor * src) {
+ return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// ggml_dup
+
+struct ggml_tensor * ggml_dup_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_DUP;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_dup(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_dup_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_dup_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_dup_impl(ctx, a, true);
+}
+
+// ggml_add
+
+struct ggml_tensor * ggml_add_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_ADD;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_add(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_add_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add_impl(ctx, a, b, true);
+}
+
+// ggml_sub
+
+struct ggml_tensor * ggml_sub_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SUB;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sub(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_sub_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_sub_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_sub_impl(ctx, a, b, true);
+}
+
+// ggml_mul
+
+struct ggml_tensor * ggml_mul_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ if (inplace) {
+ assert(is_node == false);
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_MUL;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_mul(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_mul_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_mul_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_mul_impl(ctx, a, b, true);
+}
+
+// ggml_div
+
+struct ggml_tensor * ggml_div_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ if (inplace) {
+ assert(is_node == false);
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_DIV;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_div(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_div_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_div_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_div_impl(ctx, a, b, true);
+}
+
+// ggml_sqr
+
+struct ggml_tensor * ggml_sqr_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SQR;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sqr(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqr_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_sqr_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqr_impl(ctx, a, true);
+}
+
+// ggml_sqrt
+
+struct ggml_tensor * ggml_sqrt_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SQRT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sqrt(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqrt_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_sqrt_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqrt_impl(ctx, a, true);
+}
+
+// ggml_sum
+
+struct ggml_tensor * ggml_sum(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
+
+ result->op = GGML_OP_SUM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_mean
+
+struct ggml_tensor * ggml_mean(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement
+ is_node = true;
+ }
+
+ int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
+
+ result->op = GGML_OP_MEAN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_repeat
+
+struct ggml_tensor * ggml_repeat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_can_repeat(a, b));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ if (ggml_are_same_shape(a, b) && !is_node) {
+ return a;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
+
+ result->op = GGML_OP_REPEAT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_abs
+
+struct ggml_tensor * ggml_abs_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_ABS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_abs(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_abs_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_abs_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_abs_impl(ctx, a, true);
+}
+
+
+// ggml_sgn
+
+struct ggml_tensor * ggml_sgn_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SGN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sgn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sgn_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_sgn_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sgn_impl(ctx, a, true);
+}
+
+// ggml_neg
+
+struct ggml_tensor * ggml_neg_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_NEG;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_neg(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_neg_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_neg_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_neg_impl(ctx, a, true);
+}
+
+// ggml_step
+
+struct ggml_tensor * ggml_step_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_STEP;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_step(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_step_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_step_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_step_impl(ctx, a, true);
+}
+
+// ggml_relu
+
+struct ggml_tensor * ggml_relu_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_RELU;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_relu_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_relu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_relu_impl(ctx, a, true);
+}
+
+// ggml_gelu
+
+struct ggml_tensor * ggml_gelu_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_GELU;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_gelu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_gelu_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_gelu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_gelu_impl(ctx, a, true);
+}
+
+// ggml_norm
+
+struct ggml_tensor * ggml_norm_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_NORM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL; // TODO: maybe store epsilon here?
+
+ return result;
+}
+
+struct ggml_tensor * ggml_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_norm_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_norm_impl(ctx, a, true);
+}
+
+// ggml_mul_mat
+
+struct ggml_tensor * ggml_mul_mat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_can_mul_mat(a, b));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
+
+ result->op = GGML_OP_MUL_MAT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_scale
+
+struct ggml_tensor * ggml_scale_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_is_scalar(b));
+ assert(ggml_is_padded_1d(a));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ result->op = GGML_OP_SCALE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_scale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_scale_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_scale_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_scale_impl(ctx, a, b, true);
+}
+
+// ggml_cpy
+
+struct ggml_tensor * ggml_cpy_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ assert(ggml_nelements(a) == ggml_nelements(b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // make a view of the destination
+ struct ggml_tensor * result = ggml_view_tensor(ctx, b);
+
+ result->op = GGML_OP_CPY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_cpy(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_cpy_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_cpy_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_cpy_impl(ctx, a, b, true);
+}
+
+// ggml_reshape
+
+struct ggml_tensor * ggml_reshape(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_is_contiguous(a));
+ assert(ggml_is_contiguous(b));
+ assert(ggml_nelements(a) == ggml_nelements(b));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1) {
+ assert(ggml_is_contiguous(a));
+ assert(ggml_nelements(a) == ne0*ne1);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int ne[2] = { ne0, ne1 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ int ne2) {
+ assert(ggml_is_contiguous(a));
+ assert(ggml_nelements(a) == ne0*ne1*ne2);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int ne[3] = { ne0, ne1, ne2 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_view_1d
+
+struct ggml_tensor * ggml_view_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ size_t offset) {
+ if (a->grad) {
+ assert(false); // gradient propagation is not supported
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
+
+ result->op = GGML_OP_VIEW;
+ result->grad = NULL;
+ result->src0 = a;
+ result->src1 = NULL; // TODO: maybe store the offset here?
+
+ return result;
+}
+
+// ggml_view_2d
+
+struct ggml_tensor * ggml_view_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ size_t nb1,
+ size_t offset) {
+ if (a->grad) {
+ assert(false); // gradient propagation is not supported
+ }
+
+ const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
+
+ result->nb[1] = nb1;
+ result->nb[2] = result->nb[1]*ne1;
+ result->nb[3] = result->nb[2];
+
+ result->op = GGML_OP_VIEW;
+ result->grad = NULL;
+ result->src0 = a;
+ result->src1 = NULL; // TODO: maybe store the offset here?
+
+ return result;
+}
+
+// ggml_permute
+
+struct ggml_tensor * ggml_permute(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int axis0,
+ int axis1,
+ int axis2,
+ int axis3) {
+ assert(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
+ assert(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
+ assert(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
+ assert(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
+
+ assert(axis0 != axis1);
+ assert(axis0 != axis2);
+ assert(axis0 != axis3);
+ assert(axis1 != axis2);
+ assert(axis1 != axis3);
+ assert(axis2 != axis3);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ int ne[GGML_MAX_DIMS];
+ int nb[GGML_MAX_DIMS];
+
+ ne[axis0] = a->ne[0];
+ ne[axis1] = a->ne[1];
+ ne[axis2] = a->ne[2];
+ ne[axis3] = a->ne[3];
+
+ nb[axis0] = a->nb[0];
+ nb[axis1] = a->nb[1];
+ nb[axis2] = a->nb[2];
+ nb[axis3] = a->nb[3];
+
+ result->ne[0] = ne[0];
+ result->ne[1] = ne[1];
+ result->ne[2] = ne[2];
+ result->ne[3] = ne[3];
+
+ result->nb[0] = nb[0];
+ result->nb[1] = nb[1];
+ result->nb[2] = nb[2];
+ result->nb[3] = nb[3];
+
+ result->op = GGML_OP_PERMUTE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL; // TODO: maybe store the permutation here?
+
+ return result;
+}
+
+// ggml_transpose
+
+struct ggml_tensor * ggml_transpose(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ result->ne[0] = a->ne[1];
+ result->ne[1] = a->ne[0];
+
+ result->nb[0] = a->nb[1];
+ result->nb[1] = a->nb[0];
+
+ result->op = GGML_OP_TRANSPOSE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_get_rows
+
+struct ggml_tensor * ggml_get_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: implement non F32 return
+ //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
+ struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
+
+ result->op = GGML_OP_GET_ROWS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_diag_mask_inf
+
+struct ggml_tensor * ggml_diag_mask_inf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past) {
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
+ ((int32_t *) b->data)[0] = n_past;
+
+ result->op = GGML_OP_DIAG_MASK_INF;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_soft_max
+
+struct ggml_tensor * ggml_soft_max(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ result->op = GGML_OP_SOFT_MAX;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = NULL;
+
+ return result;
+}
+
+// ggml_rope
+
+struct ggml_tensor * ggml_rope(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_dims,
+ int mode) {
+ assert(n_past >= 0);
+ bool is_node = false;
+
+ if (a->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
+ ((int32_t *) b->data)[0] = n_past;
+ ((int32_t *) b->data)[1] = n_dims;
+ ((int32_t *) b->data)[2] = mode;
+
+ result->op = GGML_OP_ROPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_set_param(
+ struct ggml_context * ctx,
+ struct ggml_tensor * tensor) {
+ tensor->is_param = true;
+
+ assert(tensor->grad == NULL);
+ tensor->grad = ggml_dup_tensor(ctx, tensor);
+}
+
+// ggml_compute_forward_dup
+
+void ggml_compute_forward_dup(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_is_contiguous(dst));
+ assert(ggml_nelements(dst) == ggml_nelements(src0));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ if (src0->nb[0] == sizeof(float)) {
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ if (dst->type == GGML_TYPE_F32) {
+ int id = 0;
+ const size_t rs = ne00*nb00;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ char * dst_ptr = (char *) dst->data + id*rs;
+
+ memcpy(dst_ptr, src0_ptr, rs);
+
+ id++;
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ int id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr);
+ id++;
+ }
+ }
+ }
+ }
+ } else {
+ assert(false); // TODO: implement
+ }
+ } else {
+ GGML_PRINT_DEBUG("ggml_compute_forward_dup: fix me\n"); // TODO !!!
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ int id = 0;
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
+ char * dst_ptr = (char *) dst->data + id*sizeof(float);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(float));
+
+ id++;
+ }
+ }
+ }
+ }
+ }
+}
+
+// ggml_compute_forward_add
+
+void ggml_compute_forward_add_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+ assert(src1->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+void ggml_compute_forward_add(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_add_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sub
+
+void ggml_compute_forward_sub_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+ assert(src1->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sub_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+void ggml_compute_forward_sub(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sub_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mul
+
+void ggml_compute_forward_mul_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+ assert(src1->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_mul_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+void ggml_compute_forward_mul(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mul_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_div
+
+void ggml_compute_forward_div_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+ assert(src1->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_div_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+void ggml_compute_forward_div(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_div_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sqr
+
+void ggml_compute_forward_sqr_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sqr_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_sqr(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sqr_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sqrt
+
+void ggml_compute_forward_sqrt_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sqrt_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_sqrt(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sqrt_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sum
+
+void ggml_compute_forward_sum_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_is_scalar(dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+ assert(src0->nb[0] == sizeof(float));
+
+ *(float *) (dst->data) = 0.0f;
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f32(ne00,
+ (float *) (dst->data),
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_sum(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sum_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mean
+
+void ggml_compute_forward_mean_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ const int ne2 = dst->ne[2];
+ const int ne3 = dst->ne[3];
+
+ assert(ne0 == 1);
+ assert(ne1 == ne01);
+ assert(ne2 == ne02);
+ assert(ne3 == ne03);
+
+ UNUSED(ne0);
+ UNUSED(ne1);
+ UNUSED(ne2);
+ UNUSED(ne3);
+
+ const size_t nb1 = dst->nb[1];
+ const size_t nb2 = dst->nb[2];
+ const size_t nb3 = dst->nb[3];
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) = 0.0f;
+
+ ggml_vec_sum_f32(ne00,
+ (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+
+ *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_mean(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mean_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_repeat
+
+void ggml_compute_forward_repeat_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_can_repeat(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // TODO: implement support for rank > 2 tensors
+ assert(src0->ne[2] == 1);
+ assert(src0->ne[3] == 1);
+ assert( dst->ne[2] == 1);
+ assert( dst->ne[3] == 1);
+
+ const int nc = dst->ne[0];
+ const int nr = dst->ne[1];
+ const int nc0 = src0->ne[0];
+ const int nr0 = src0->ne[1];
+ const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
+
+ // TODO: support for transposed / permuted tensors
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ // TODO: maybe this is not optimal?
+ for (int i = 0; i < nrr; i++) {
+ for (int j = 0; j < ncr; j++) {
+ for (int k = 0; k < nr0; k++) {
+ ggml_vec_cpy_f32(nc0,
+ (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
+ (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_repeat(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_repeat_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_abs
+
+void ggml_compute_forward_abs_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_abs_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_abs(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_abs_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sgn
+
+void ggml_compute_forward_sgn_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sgn_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_sgn(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sgn_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_neg
+
+void ggml_compute_forward_neg_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_neg_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_neg(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_neg_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_step
+
+void ggml_compute_forward_step_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_step_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_step(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_step_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_relu
+
+void ggml_compute_forward_relu_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_relu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_relu(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_relu_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_gelu
+
+void ggml_compute_forward_gelu_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_gelu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i*( dst->nb[1])))[k];
+ UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+void ggml_compute_forward_gelu(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_norm
+
+void ggml_compute_forward_norm_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_are_same_shape(src0, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ const size_t nb1 = dst->nb[1];
+ const size_t nb2 = dst->nb[2];
+ const size_t nb3 = dst->nb[3];
+
+ const ggml_float eps = 1e-5f; // TODO: make this a parameter
+
+ // TODO: optimize
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float mean = 0.0;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ mean += x[i00];
+ }
+
+ mean /= ne00;
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ ggml_float sum2 = 0.0;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ ggml_float v = x[i00] - mean;
+ y[i00] = v;
+ sum2 += v*v;
+ }
+
+ const float scale = 1.0/sqrt(sum2/ne00 + eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_norm(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_norm_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mul_mat
+
+void ggml_compute_forward_mul_mat_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+ const int ne13 = src1->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ const int ne2 = dst->ne[2];
+ const int ne3 = dst->ne[3];
+ const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ assert(ne02 == ne12);
+ assert(ne03 == ne13);
+ assert(ne2 == ne12);
+ assert(ne3 == ne13);
+
+ // TODO: we don't support permuted src0
+ assert(nb00 == sizeof(float) || nb01 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ assert(nb0 == sizeof(float));
+ assert(nb0 <= nb1);
+ assert(nb1 <= nb2);
+ assert(nb2 <= nb3);
+
+ assert(ne0 == ne01);
+ assert(ne1 == ne11);
+ assert(ne2 == ne02);
+ assert(ne3 == ne03);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+ //
+ // nb00 < nb01 - src0 is transposed
+ // compute by src0 columns
+
+ if (params->type == GGML_TASK_INIT) {
+ if (nb01 >= nb00) {
+ return;
+ }
+
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ if (nb01 >= nb00) {
+ return;
+ }
+
+ // TODO: fix this memset (wsize is overestimated)
+ //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
+
+ float * const wdata = params->wdata;
+
+ ggml_vec_cpy_f32(ne, dst->data, wdata);
+
+ for (int k = 1; k < nth; k++) {
+ ggml_vec_acc_f32(ne, dst->data, wdata + (ne + CACHE_LINE_SIZE_F32)*k);
+ }
+
+ return;
+ }
+
+ if (nb01 >= nb00) {
+ // TODO: do not support transposed src1
+ assert(nb10 == sizeof(float));
+
+ // parallelize by src0 rows using ggml_vec_dot_f32
+
+ // total rows in src0
+ const int nr = ne01*ne02*ne03;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 indices
+ const int i03 = ir/(ne02*ne01);
+ const int i02 = (ir - i03*ne02*ne01)/ne01;
+ const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ for (int ic = 0; ic < ne11; ++ic) {
+ // src1 indices
+ const int i13 = i03;
+ const int i12 = i02;
+ const int i11 = ic;
+
+ // dst indices
+ const int i0 = i01;
+ const int i1 = i11;
+ const int i2 = i02;
+ const int i3 = i03;
+
+ ggml_vec_dot_f32(ne00,
+ (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
+ (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
+ }
+ }
+ } else {
+ // parallelize by src1 columns using ggml_vec_mad_f32
+ // each thread has its own work data
+ // during FINALIZE we accumulate all work data into dst
+
+ // total columns in src1
+ const int nc = ne10;
+
+ // columns per thread
+ const int dc = (nc + nth - 1)/nth;
+
+ // column range for this thread
+ const int ic0 = dc*ith;
+ const int ic1 = MIN(ic0 + dc, nc);
+
+ // work data for thread
+ const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
+ float * const wdata = params->wdata;
+
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ for (int i11 = 0; i11 < ne11; ++i11) {
+ for (int ic = ic0; ic < ic1; ++ic) {
+ // src1 indices
+ const int i10 = ic;
+
+ // src0 indices
+ const int i03 = i13;
+ const int i02 = i12;
+ const int i00 = ic;
+
+ // dst indices
+ const int i1 = i11;
+ const int i2 = i12;
+ const int i3 = i13;
+
+ assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
+
+ ggml_vec_mad_f32(ne01,
+ (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
+ (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
+ *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
+ }
+ }
+ }
+ }
+ }
+
+ //int64_t t1 = ggml_time_us();
+ //static int64_t acc = 0;
+ //acc += t1 - t0;
+ //if (t1 - t0 > 10) {
+ // printf("\n");
+ // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
+ // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
+ // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
+ // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
+
+ // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
+ //}
+}
+
+void ggml_compute_forward_mul_mat_f16_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+ const int ne13 = src1->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ const int ne2 = dst->ne[2];
+ const int ne3 = dst->ne[3];
+ const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ const int nb03 = src0->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ assert(ne02 == ne12);
+ assert(ne03 == ne13);
+ assert(ne2 == ne12);
+ assert(ne3 == ne13);
+
+ // TODO: we don't support permuted src0
+ assert(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
+
+ // dst cannot be transposed or permuted
+ assert(nb0 == sizeof(float));
+ assert(nb0 <= nb1);
+ assert(nb1 <= nb2);
+ assert(nb2 <= nb3);
+
+ assert(ne0 == ne01);
+ assert(ne1 == ne11);
+ assert(ne2 == ne02);
+ assert(ne3 == ne03);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+ //
+ // nb00 < nb01 - src0 is transposed
+ // compute by src0 columns
+
+ if (params->type == GGML_TASK_INIT) {
+ if (nb01 >= nb00) {
+ ggml_fp16_t * const wdata = params->wdata;
+
+ for (int i = 0; i < ne10*ne11*ne12*ne13; ++i) {
+ wdata[i] = ggml_fp32_to_fp16(((float *) src1->data)[i]);
+ }
+
+ return;
+ }
+
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ if (nb01 >= nb00) {
+ return;
+ }
+
+ // TODO: fix this memset (wsize is overestimated)
+ //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
+
+ ggml_fp16_t * const wdata = params->wdata;
+
+ for (int i = 0; i < ne; ++i) {
+ ((float *) dst->data)[i] = ggml_fp16_to_fp32(wdata[i]);
+ }
+
+ for (int k = 1; k < nth; k++) {
+ for (int i = 0; i < ne; ++i) {
+ ((float *) dst->data)[i] += ggml_fp16_to_fp32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
+ }
+ }
+
+ return;
+ }
+
+ if (nb01 >= nb00) {
+ // fp16 -> half the size, so divide by 2
+ const int nb10 = src1->nb[0]/2; UNUSED(nb10);
+
+ // TODO: do not support transposed src1
+ assert(nb10 == sizeof(ggml_fp16_t));
+
+ // parallelize by src0 rows using ggml_vec_dot_f32
+
+ // total rows in src0
+ const int nr = ne01*ne02*ne03;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ ggml_fp16_t * wdata = params->wdata;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 indices
+ const int i03 = ir/(ne02*ne01);
+ const int i02 = (ir - i03*ne02*ne01)/ne01;
+ const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
+
+ for (int ic = 0; ic < ne11; ++ic) {
+ // src1 indices
+ const int i13 = i03;
+ const int i12 = i02;
+ const int i11 = ic;
+
+ // dst indices
+ const int i0 = i01;
+ const int i1 = i11;
+ const int i2 = i02;
+ const int i3 = i03;
+
+ assert(ne00 % 64 == 0);
+
+ ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + i11)*ne00;
+
+ float * dst_row = (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_dot_f16(ne00, dst_row, src0_row, src1_col);
+ }
+ }
+ } else {
+ // parallelize by src1 columns using ggml_vec_mad_f32
+ // each thread has its own work data
+ // during FINALIZE we accumulate all work data into dst
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
+ // total columns in src1
+ const int nc = ne10;
+
+ // columns per thread
+ const int dc = (nc + nth - 1)/nth;
+
+ // column range for this thread
+ const int ic0 = dc*ith;
+ const int ic1 = MIN(ic0 + dc, nc);
+
+ // work data for thread
+ const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
+ ggml_fp16_t * const wdata = params->wdata;
+
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ for (int i11 = 0; i11 < ne11; ++i11) {
+ // dst indices
+ const int i1 = i11;
+ const int i2 = i12;
+ const int i3 = i13;
+
+ ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
+
+ for (int ic = ic0; ic < ic1; ++ic) {
+ // src1 indices
+ const int i10 = ic;
+
+ // src0 indices
+ const int i03 = i13;
+ const int i02 = i12;
+ const int i00 = ic;
+
+ assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
+
+ ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
+ float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+
+ ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
+ }
+ }
+ }
+ }
+ }
+
+ //int64_t t1 = ggml_time_us();
+ //static int64_t acc = 0;
+ //acc += t1 - t0;
+ //if (t1 - t0 > 10) {
+ // printf("\n");
+ // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
+ // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
+ // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
+
+ // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
+ //}
+}
+
+void ggml_compute_forward_mul_mat(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+// ggml_compute_forward_scale
+
+void ggml_compute_forward_scale_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(ggml_is_scalar(src1));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+ assert(src1->nb[0] == sizeof(float));
+
+ const float v = *(float *) src1->data;
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i*(dst->nb[1])), v);
+ }
+}
+
+void ggml_compute_forward_scale(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_scale_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_cpy
+
+void ggml_compute_forward_cpy(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ ggml_compute_forward_dup(params, src0, dst);
+}
+
+// ggml_compute_forward_reshape
+
+void ggml_compute_forward_reshape(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ // NOP
+ UNUSED(params);
+ UNUSED(src0);
+ UNUSED(dst);
+}
+
+// ggml_compute_forward_view
+
+void ggml_compute_forward_view(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0) {
+ // NOP
+ UNUSED(params);
+ UNUSED(src0);
+}
+
+// ggml_compute_forward_permute
+
+void ggml_compute_forward_permute(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0) {
+ // NOP
+ UNUSED(params);
+ UNUSED(src0);
+}
+
+// ggml_compute_forward_transpose
+
+void ggml_compute_forward_transpose(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0) {
+ // NOP
+ UNUSED(params);
+ UNUSED(src0);
+}
+
+// ggml_compute_forward_get_rows
+
+void ggml_compute_forward_get_rows_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ assert( dst->ne[0] == nc);
+ assert( dst->ne[1] == nr);
+ assert(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ for (int j = 0; j < nc; ++j) {
+ ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
+ ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = ggml_fp16_to_fp32(v);
+ }
+ }
+}
+
+void ggml_compute_forward_get_rows_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ assert( dst->ne[0] == nc);
+ assert( dst->ne[1] == nr);
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i*dst->nb[1]),
+ (float *) ((char *) src0->data + r*src0->nb[1]));
+ }
+}
+
+void ggml_compute_forward_get_rows(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_diag_mask_inf
+
+void ggml_compute_forward_diag_mask_inf_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 1);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n_past = ((int32_t *) src1->data)[0];
+
+ // TODO: handle transposed/permuted matrices
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+ const int nr = src0->ne[1];
+ const int nz = n/nr;
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int k = 0; k < nz; k++) {
+ for (int j = 0; j < nr; j++) {
+ for (int i = n_past; i < nc; i++) {
+ if (i > n_past + j) {
+ *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_diag_mask_inf(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_soft_max
+
+void ggml_compute_forward_soft_max_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+ const int nr = src0->ne[1];
+ const int nz = n/nr;
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int k = 0; k < nz; k++) {
+ for (int j = 0; j < nr; j++) {
+ float *p = (float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1]);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(p[i]));
+ }
+#endif
+
+ float max = -INFINITY;
+ for (int i = 0; i < nc; i++) {
+ max = MAX(max, p[i]);
+ }
+
+ ggml_float sum = 0.0;
+ for (int i = 0; i < nc; i++) {
+ const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
+ sum += v;
+ p[i] = v;
+ }
+
+ assert(sum > 0.0f);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(nc, p, sum);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(p[i]));
+ assert(!isinf(p[i]));
+ }
+#endif
+ }
+ }
+}
+
+void ggml_compute_forward_soft_max(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_rope
+
+void ggml_compute_forward_rope_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 3);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_dims = ((int32_t *) src1->data)[1];
+ const int mode = ((int32_t *) src1->data)[2];
+
+ //const int ne0 = src0->ne[0];
+ const int ne1 = src0->ne[1];
+ const int ne2 = src0->ne[2];
+ const int ne3 = src0->ne[3];
+
+ const int nb0 = src0->nb[0];
+ const int nb1 = src0->nb[1];
+ const int nb2 = src0->nb[2];
+ const int nb3 = src0->nb[3];
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ assert(nb0 == sizeof(float));
+
+ // TODO: optimize
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
+ const int p = (mode == 0 ? n_past + i2 : i2);
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < n_dims; i0 += 2) {
+ const double theta = pow(10000.0, ((double)-i0)/n_dims);
+
+ const double cos_theta = cos(p*theta);
+ const double sin_theta = sin(p*theta);
+
+ const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ double x0 = src[0];
+ double x1 = src[1];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_rope(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+/////////////////////////////////
+
+void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
+ assert(params);
+
+ switch (tensor->op) {
+ case GGML_OP_DUP:
+ {
+ ggml_compute_forward_dup(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_ADD:
+ {
+ ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_SUB:
+ {
+ ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_MUL:
+ {
+ ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_DIV:
+ {
+ ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_SQR:
+ {
+ ggml_compute_forward_sqr(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_SQRT:
+ {
+ ggml_compute_forward_sqrt(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_SUM:
+ {
+ ggml_compute_forward_sum(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_MEAN:
+ {
+ ggml_compute_forward_mean(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_REPEAT:
+ {
+ ggml_compute_forward_repeat(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_ABS:
+ {
+ ggml_compute_forward_abs(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_SGN:
+ {
+ ggml_compute_forward_sgn(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_NEG:
+ {
+ ggml_compute_forward_neg(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_STEP:
+ {
+ ggml_compute_forward_step(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_RELU:
+ {
+ ggml_compute_forward_relu(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_GELU:
+ {
+ ggml_compute_forward_gelu(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_NORM:
+ {
+ ggml_compute_forward_norm(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_SCALE:
+ {
+ ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_CPY:
+ {
+ ggml_compute_forward_cpy(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_RESHAPE:
+ {
+ ggml_compute_forward_reshape(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_VIEW:
+ {
+ ggml_compute_forward_view(params, tensor->src0);
+ } break;
+ case GGML_OP_PERMUTE:
+ {
+ ggml_compute_forward_permute(params, tensor->src0);
+ } break;
+ case GGML_OP_TRANSPOSE:
+ {
+ ggml_compute_forward_transpose(params, tensor->src0);
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ ggml_compute_forward_soft_max(params, tensor->src0, tensor);
+ } break;
+ case GGML_OP_ROPE:
+ {
+ ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_NONE:
+ {
+ // nop
+ } break;
+ case GGML_OP_COUNT:
+ {
+ assert(false);
+ } break;
+ };
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
+ struct ggml_tensor * src0 = tensor->src0;
+ struct ggml_tensor * src1 = tensor->src1;
+
+ switch (tensor->op) {
+ case GGML_OP_DUP:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
+ }
+ } break;
+ case GGML_OP_ADD:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
+ }
+ if (src1->grad) {
+ src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
+ }
+ } break;
+ case GGML_OP_SUB:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
+ }
+ if (src1->grad) {
+ src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
+ }
+ } break;
+ case GGML_OP_MUL:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_mul(ctx, src1, tensor->grad),
+ inplace);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_add_impl(ctx,
+ src1->grad,
+ ggml_mul(ctx, src0, tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_DIV:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_div(ctx, tensor->grad, src1),
+ inplace);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_sub_impl(ctx,
+ src1->grad,
+ ggml_mul(ctx,
+ tensor->grad,
+ ggml_div(ctx, tensor, src1)),
+ inplace);
+ }
+ } break;
+ case GGML_OP_SQR:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_mul(ctx,
+ ggml_mul(ctx, src0, tensor->grad),
+ ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
+ inplace);
+ }
+ } break;
+ case GGML_OP_SQRT:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_div(ctx,
+ ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
+ tensor),
+ inplace);
+ }
+ } break;
+ case GGML_OP_SUM:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_repeat(ctx, tensor->grad, src0->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_MEAN:
+ {
+ assert(false); // TODO: implement
+ } break;
+ case GGML_OP_REPEAT:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_sum(ctx, tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_ABS:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_impl(ctx,
+ src0->grad,
+ ggml_mul(ctx,
+ ggml_sgn(ctx, src0),
+ tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_SGN:
+ {
+ if (src0->grad) {
+ // noop
+ }
+ } break;
+ case GGML_OP_NEG:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
+ }
+ } break;
+ case GGML_OP_STEP:
+ {
+ if (src0->grad) {
+ // noop
+ }
+ } break;
+ case GGML_OP_RELU:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_sub_impl(ctx,
+ src0->grad,
+ ggml_mul(ctx,
+ ggml_step(ctx, src0),
+ tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_GELU:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_NORM:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ if (src0->grad) {
+ // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
+ assert(false);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_add_impl(ctx,
+ src1->grad,
+ // TODO: fix transpose, the node will break the graph connections
+ ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_SCALE:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CPY:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_RESHAPE:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_VIEW:
+ {
+ assert(false); // not supported
+ } break;
+ case GGML_OP_PERMUTE:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_TRANSPOSE:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_ROPE:
+ {
+ assert(false); // TODO: not implemented
+ } break;
+ case GGML_OP_NONE:
+ {
+ // nop
+ } break;
+ case GGML_OP_COUNT:
+ {
+ assert(false);
+ } break;
+ };
+}
+
+void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
+ if (node->grad == NULL) {
+ // this usually happens when we generate intermediate nodes from constants in the backward pass
+ // it can also happen during forward pass, if the user performs computations with constants
+ if (node->op != GGML_OP_NONE) {
+ //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
+ }
+ }
+
+ // check if already visited
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ if (cgraph->nodes[i] == node) {
+ return;
+ }
+ }
+
+ for (int i = 0; i < cgraph->n_leafs; i++) {
+ if (cgraph->leafs[i] == node) {
+ return;
+ }
+ }
+
+ if (node->src0) {
+ ggml_visit_parents(cgraph, node->src0);
+ }
+
+ if (node->src1) {
+ ggml_visit_parents(cgraph, node->src1);
+ }
+
+ if (node->op == GGML_OP_NONE && node->grad == NULL) {
+ // reached a leaf node, not part of the gradient graph (e.g. a constant)
+ assert(cgraph->n_leafs < GGML_MAX_NODES);
+
+ cgraph->leafs[cgraph->n_leafs] = node;
+ cgraph->n_leafs++;
+ } else {
+ assert(cgraph->n_nodes < GGML_MAX_NODES);
+
+ cgraph->nodes[cgraph->n_nodes] = node;
+ cgraph->grads[cgraph->n_nodes] = node->grad;
+ cgraph->n_nodes++;
+ }
+}
+
+void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
+ if (!expand) {
+ cgraph->n_nodes = 0;
+ cgraph->n_leafs = 0;
+ }
+
+ const int n0 = cgraph->n_nodes;
+ UNUSED(n0);
+
+ ggml_visit_parents(cgraph, tensor);
+
+ const int n_new = cgraph->n_nodes - n0;
+ GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
+
+ if (n_new > 0) {
+ // the last added node should always be starting point
+ assert(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
+ }
+}
+
+void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
+ ggml_build_forward_impl(cgraph, tensor, true);
+}
+
+struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
+ struct ggml_cgraph result = {
+ /*.n_nodes =*/ 0,
+ /*.n_leafs =*/ 0,
+ /*.n_threads =*/ 0,
+ /*.work_size =*/ 0,
+ /*.work =*/ NULL,
+ /*.nodes =*/ { NULL },
+ /*.grads =*/ { NULL },
+ /*.leafs =*/ { NULL },
+ /*.perf_runs =*/ 0,
+ /*.perf_cycles =*/ 0,
+ /*.perf_time_us =*/ 0,
+ };
+
+ ggml_build_forward_impl(&result, tensor, false);
+
+ return result;
+}
+
+struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
+ struct ggml_cgraph result = *gf;
+
+ assert(gf->n_nodes > 0);
+
+ // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
+ if (keep) {
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->grad) {
+ node->grad = ggml_dup_tensor(ctx, node);
+ gf->grads[i] = node->grad;
+ }
+ }
+ }
+
+ for (int i = gf->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ // because we detached the grad nodes from the original graph, we can afford inplace operations
+ if (node->grad) {
+ ggml_compute_backward(ctx, node, keep);
+ }
+ }
+
+ for (int i = gf->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->is_param) {
+ GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
+ ggml_build_forward_impl(&result, node->grad, true);
+ }
+ }
+
+ return result;
+}
+
+//
+// thread data
+//
+// synchronization is done via busy loops
+// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
+//
+
+#ifdef __APPLE__
+
+//#include <os/lock.h>
+
+//typedef os_unfair_lock ggml_lock_t;
+//
+//#define ggml_lock_init(x) UNUSED(x)
+//#define ggml_lock_destroy(x) UNUSED(x)
+//#define ggml_lock_lock os_unfair_lock_lock
+//#define ggml_lock_unlock os_unfair_lock_unlock
+//
+//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
+
+typedef int ggml_lock_t;
+
+#define ggml_lock_init(x) UNUSED(x)
+#define ggml_lock_destroy(x) UNUSED(x)
+#define ggml_lock_lock(x) UNUSED(x)
+#define ggml_lock_unlock(x) UNUSED(x)
+
+#define GGML_LOCK_INITIALIZER 0
+
+#else
+
+//typedef pthread_spinlock_t ggml_lock_t;
+
+//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
+//#define ggml_lock_destroy pthread_spin_destroy
+//#define ggml_lock_lock pthread_spin_lock
+//#define ggml_lock_unlock pthread_spin_unlock
+
+typedef int ggml_lock_t;
+
+#define ggml_lock_init(x) UNUSED(x)
+#define ggml_lock_destroy(x) UNUSED(x)
+#define ggml_lock_lock(x) UNUSED(x)
+#define ggml_lock_unlock(x) UNUSED(x)
+
+#define GGML_LOCK_INITIALIZER 0
+
+#endif
+
+struct ggml_compute_state_shared {
+ ggml_lock_t spin;
+
+ int n_threads;
+
+ // synchronization primitives
+ atomic_int n_ready;
+ atomic_bool has_work;
+ atomic_bool stop; // stop all threads
+};
+
+struct ggml_compute_state {
+ pthread_t thrd;
+
+ struct ggml_compute_params params;
+ struct ggml_tensor * node;
+
+ struct ggml_compute_state_shared * shared;
+};
+
+// function used by each compute thread
+void * ggml_graph_compute_one(void * data) {
+ struct ggml_compute_state * state = (struct ggml_compute_state *) data;
+
+ ggml_compute_forward(&state->params, state->node);
+
+ return NULL;
+}
+
+void * ggml_graph_compute_thread(void * data) {
+ struct ggml_compute_state * state = (struct ggml_compute_state *) data;
+
+ const int n_threads = state->shared->n_threads;
+
+ while (true) {
+ if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
+ atomic_store(&state->shared->has_work, false);
+ } else {
+ while (atomic_load(&state->shared->has_work)) {
+ if (atomic_load(&state->shared->stop)) {
+ return NULL;
+ }
+ ggml_lock_lock (&state->shared->spin);
+ ggml_lock_unlock(&state->shared->spin);
+ }
+ }
+
+ atomic_fetch_sub(&state->shared->n_ready, 1);
+
+ // wait for work
+ while (!atomic_load(&state->shared->has_work)) {
+ if (atomic_load(&state->shared->stop)) {
+ return NULL;
+ }
+ ggml_lock_lock (&state->shared->spin);
+ ggml_lock_unlock(&state->shared->spin);
+ }
+
+ // check if we should stop
+ if (atomic_load(&state->shared->stop)) {
+ break;
+ }
+
+ if (state->node) {
+ ggml_compute_forward(&state->params, state->node);
+ state->node = NULL;
+ } else {
+ break;
+ }
+ }
+
+ return NULL;
+}
+
+void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
+ if (cgraph->n_threads <= 0) {
+ cgraph->n_threads = 8;
+ }
+
+ const int n_threads = cgraph->n_threads;
+
+ struct ggml_compute_state_shared state_shared = {
+ /*.spin =*/ GGML_LOCK_INITIALIZER,
+ /*.n_threads =*/ n_threads,
+ /*.n_ready =*/ 0,
+ /*.has_work =*/ false,
+ /*.stop =*/ false,
+ };
+ struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
+
+ // create thread pool
+ if (n_threads > 1) {
+ ggml_lock_init(&state_shared.spin);
+
+ atomic_store(&state_shared.has_work, true);
+
+ for (int j = 0; j < n_threads - 1; j++) {
+ workers[j] = (struct ggml_compute_state) {
+ .thrd = 0,
+ .params = {
+ .type = GGML_TASK_COMPUTE,
+ .ith = j + 1,
+ .nth = n_threads,
+ .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
+ .wdata = cgraph->work ? cgraph->work->data : NULL,
+ },
+ .node = NULL,
+ .shared = &state_shared,
+ };
+ int rc = pthread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
+ assert(rc == 0);
+ UNUSED(rc);
+ }
+ }
+
+ // initialize tasks + work buffer
+ {
+ size_t work_size = 0;
+
+ // thread scheduling for the different operations
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ switch (node->op) {
+ case GGML_OP_DUP:
+ case GGML_OP_ADD:
+ case GGML_OP_SUB:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_SUM:
+ case GGML_OP_MEAN:
+ case GGML_OP_REPEAT:
+ case GGML_OP_ABS:
+ case GGML_OP_SGN:
+ case GGML_OP_NEG:
+ case GGML_OP_STEP:
+ case GGML_OP_RELU:
+ case GGML_OP_GELU:
+ case GGML_OP_NORM:
+ {
+ node->n_tasks = 1;
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ // TODO: use different scheduling for different matrix sizes
+ node->n_tasks = n_threads;
+
+ // TODO: better way to determine if the matrix is transposed
+ if (node->src0->nb[1] < node->src0->nb[0]) {
+ size_t cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
+ work_size = MAX(work_size, cur);
+ } else {
+ if (node->src0->type == GGML_TYPE_F16 &&
+ node->src1->type == GGML_TYPE_F32) {
+ size_t cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
+ work_size = MAX(work_size, cur);
+ }
+ }
+ } break;
+ case GGML_OP_SCALE:
+ case GGML_OP_CPY:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_GET_ROWS:
+ case GGML_OP_DIAG_MASK_INF:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_ROPE:
+ {
+ node->n_tasks = 1;
+ } break;
+ case GGML_OP_NONE:
+ {
+ node->n_tasks = 1;
+ } break;
+ case GGML_OP_COUNT:
+ {
+ assert(false);
+ } break;
+ };
+ }
+
+ if (cgraph->work != NULL && work_size > cgraph->work_size) {
+ assert(false); // TODO: better handling
+ }
+
+ if (work_size > 0 && cgraph->work == NULL) {
+ cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
+
+ GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
+ cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
+ }
+ }
+
+ const int64_t perf_start_cycles = ggml_cycles();
+ const int64_t perf_start_time_us = ggml_time_us();
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
+
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
+ //if (node->grad == NULL && node->perf_runs > 0) {
+ // continue;
+ //}
+
+ const int64_t perf_node_start_cycles = ggml_cycles();
+ const int64_t perf_node_start_time_us = ggml_time_us();
+
+ // INIT
+ struct ggml_compute_params params = {
+ /*.type =*/ GGML_TASK_INIT,
+ /*.ith =*/ 0,
+ /*.nth =*/ n_threads,
+ /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
+ /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
+ };
+
+ ggml_compute_forward(¶ms, node);
+
+ // COMPUTE
+ if (node->n_tasks > 1) {
+ if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+ atomic_store(&state_shared.has_work, false);
+ }
+
+ while (atomic_load(&state_shared.has_work)) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ // launch thread pool
+ for (int j = 0; j < n_threads - 1; j++) {
+ workers[j].params = (struct ggml_compute_params) {
+ .type = GGML_TASK_COMPUTE,
+ .ith = j + 1,
+ .nth = n_threads,
+ .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
+ .wdata = cgraph->work ? cgraph->work->data : NULL,
+ };
+ workers[j].node = node;
+ }
+
+ atomic_fetch_sub(&state_shared.n_ready, 1);
+
+ while (atomic_load(&state_shared.n_ready) > 0) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ atomic_store(&state_shared.has_work, true);
+ }
+
+ params.type = GGML_TASK_COMPUTE;
+ ggml_compute_forward(¶ms, node);
+
+ if (node->n_tasks > 1) {
+ if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+ atomic_store(&state_shared.has_work, false);
+ }
+
+ while (atomic_load(&state_shared.has_work)) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ atomic_fetch_sub(&state_shared.n_ready, 1);
+
+ while (atomic_load(&state_shared.n_ready) != 0) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+ }
+
+ // FINALIZE
+ params.type = GGML_TASK_FINALIZE;
+ ggml_compute_forward(¶ms, node);
+
+ // performance stats (node)
+ {
+ int64_t perf_cycles_cur = ggml_cycles() - perf_node_start_cycles;
+ int64_t perf_time_us_cur = ggml_time_us() - perf_node_start_time_us;
+
+ node->perf_runs++;
+ node->perf_cycles += perf_cycles_cur;
+ node->perf_time_us += perf_time_us_cur;
+ }
+ }
+
+ // join thread pool
+ if (n_threads > 1) {
+ atomic_store(&state_shared.stop, true);
+ atomic_store(&state_shared.has_work, true);
+
+ for (int j = 0; j < n_threads - 1; j++) {
+ int rc = pthread_join(workers[j].thrd, NULL);
+ assert(rc == 0);
+ UNUSED(rc);
+ }
+
+ ggml_lock_destroy(&state_shared.spin);
+ }
+
+ // performance stats (graph)
+ {
+ int64_t perf_cycles_cur = ggml_cycles() - perf_start_cycles;
+ int64_t perf_time_us_cur = ggml_time_us() - perf_start_time_us;
+
+ cgraph->perf_runs++;
+ cgraph->perf_cycles += perf_cycles_cur;
+ cgraph->perf_time_us += perf_time_us_cur;
+
+ GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
+ __func__, cgraph->perf_runs,
+ (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
+ (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
+ (double) perf_time_us_cur / 1000.0,
+ (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
+ }
+}
+
+void ggml_graph_reset(struct ggml_cgraph * cgraph) {
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * grad = cgraph->grads[i];
+
+ if (grad) {
+ ggml_set_zero(grad);
+ }
+ }
+}
+
+void ggml_graph_print(const struct ggml_cgraph * cgraph) {
+ int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
+
+ GGML_PRINT("=== GRAPH ===\n");
+
+ GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
+ GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
+
+ GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ perf_total_per_op_us[node->op] += node->perf_time_us;
+
+ GGML_PRINT(" - %3d: [ %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
+ i,
+ node->ne[0], node->ne[1],
+ GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
+ (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
+ (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
+ (double) node->perf_time_us / 1000.0,
+ (double) node->perf_time_us / 1000.0 / node->perf_runs);
+ }
+
+ GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
+ for (int i = 0; i < cgraph->n_leafs; i++) {
+ struct ggml_tensor * node = cgraph->leafs[i];
+
+ GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
+ i,
+ node->ne[0], node->ne[1],
+ GGML_OP_LABEL[node->op]);
+ }
+
+ for (int i = 0; i < GGML_OP_COUNT; i++) {
+ GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
+ }
+
+ GGML_PRINT("========================================\n");
+}
+
+// check if node is part of the graph
+bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
+ if (cgraph == NULL) {
+ return true;
+ }
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ if (cgraph->nodes[i] == node) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * parent = cgraph->nodes[i];
+
+ if (parent->grad == node) {
+ return parent;
+ }
+ }
+
+ return NULL;
+}
+
+void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
+ char color[16];
+
+ FILE * fp = fopen(filename, "w");
+ assert(fp);
+
+ fprintf(fp, "digraph G {\n");
+ fprintf(fp, " newrank = true;\n");
+ fprintf(fp, " rankdir = LR;\n");
+
+ for (int i = 0; i < gb->n_nodes; i++) {
+ struct ggml_tensor * node = gb->nodes[i];
+
+ if (ggml_graph_get_parent(gb, node) != NULL) {
+ continue;
+ }
+
+ if (node->is_param) {
+ snprintf(color, sizeof(color), "yellow");
+ } else if (node->grad) {
+ if (ggml_graph_find(gf, node)) {
+ snprintf(color, sizeof(color), "green");
+ } else {
+ snprintf(color, sizeof(color), "lightblue");
+ }
+ } else {
+ snprintf(color, sizeof(color), "white");
+ }
+
+ fprintf(fp, " \"%p\" [ \
+style = filled; fillcolor = %s; shape = record; \
+label=\"%d [%d, %d] | <x>%s",
+ (void *) node, color,
+ i, node->ne[0], node->ne[1],
+ GGML_OP_SYMBOL[node->op]);
+
+ if (node->grad) {
+ fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
+ } else {
+ fprintf(fp, "\"; ]\n");
+ }
+ }
+
+ for (int i = 0; i < gb->n_leafs; i++) {
+ struct ggml_tensor * node = gb->leafs[i];
+
+ snprintf(color, sizeof(color), "pink");
+
+ if (ggml_nelements(node) == 1) {
+ fprintf(fp, " \"%p\" [ \
+style = filled; fillcolor = %s; shape = record; \
+label=\"<x>%.1e\"; ]\n",
+ (void *) node, color, ggml_get_f32_1d(node, 0));
+ } else {
+ fprintf(fp, " \"%p\" [ \
+style = filled; fillcolor = %s; shape = record; \
+label=\"<x>CONST %d [%d, %d]\"; ]\n",
+ (void *) node, color,
+ i, node->ne[0], node->ne[1]);
+ }
+ }
+
+ for (int i = 0; i < gb->n_nodes; i++) {
+ struct ggml_tensor * node = gb->nodes[i];
+
+ struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
+
+ if (node->src0) {
+ struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
+
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
+ parent0 ? (void *) parent0 : (void *) node->src0,
+ parent0 ? "g" : "x",
+ parent ? (void *) parent : (void *) node,
+ parent ? "g" : "x",
+ parent ? "empty" : "vee",
+ parent ? "dashed" : "solid");
+ }
+
+ if (node->src1) {
+ struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
+
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
+ parent1 ? (void *) parent1 : (void *) node->src1,
+ parent1 ? "g" : "x",
+ parent ? (void *) parent : (void *) node,
+ parent ? "g" : "x",
+ parent ? "empty" : "vee",
+ parent ? "dashed" : "solid");
+ }
+ }
+
+ for (int i = 0; i < gb->n_leafs; i++) {
+ struct ggml_tensor * node = gb->leafs[i];
+
+ if (node->src0) {
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
+ (void *) node->src0, "x",
+ (void *) node, "x");
+ }
+
+ if (node->src1) {
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
+ (void *) node->src1, "x",
+ (void *) node, "x");
+ }
+ }
+
+ fprintf(fp, "}\n");
+
+ fclose(fp);
+
+ GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
+ int i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to set tensor from array
+ for (int j = 0; j < ne; ++j) {
+ ggml_set_f32_1d(ps[p], j, x[i++]);
+ }
+ }
+}
+
+void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
+ int i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to get all elements at once
+ for (int j = 0; j < ne; ++j) {
+ x[i++] = ggml_get_f32_1d(ps[p], j);
+ }
+ }
+}
+
+void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
+ int i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to get all elements at once
+ for (int j = 0; j < ne; ++j) {
+ g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
+ }
+ }
+}
+
+//
+// ADAM
+//
+// ref: https://arxiv.org/pdf/1412.6980.pdf
+//
+
+enum ggml_opt_result ggml_opt_adam(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb) {
+ assert(ggml_is_scalar(f));
+
+ gf->n_threads = params.n_threads;
+ gb->n_threads = params.n_threads;
+
+ // these will store the parameters we want to optimize
+ struct ggml_tensor * ps[GGML_MAX_PARAMS];
+
+ int np = 0;
+ int nx = 0;
+ for (int i = 0; i < gf->n_nodes; ++i) {
+ if (gf->nodes[i]->is_param) {
+ GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
+
+ assert(np < GGML_MAX_PARAMS);
+
+ ps[np++] = gf->nodes[i];
+ nx += ggml_nelements(gf->nodes[i]);
+ }
+ }
+
+ // constants
+ const float alpha = params.adam.alpha;
+ const float beta1 = params.adam.beta1;
+ const float beta2 = params.adam.beta2;
+ const float eps = params.adam.eps;
+
+ float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
+ float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
+ float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
+ float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
+ float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
+ float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
+ float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
+
+ float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
+
+ // initialize
+ ggml_vec_set_f32(nx, m, 0.0f);
+ ggml_vec_set_f32(nx, v, 0.0f);
+
+ // update view
+ ggml_opt_get_params(np, ps, x);
+
+ // compute the function value
+ ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx, gb);
+
+ float fx_prev = ggml_get_f32_1d(f, 0);
+ if (pf) {
+ pf[0] = fx_prev;
+ }
+
+ int n_no_improvement = 0;
+ float fx_best = fx_prev;
+
+ // run the optimizer
+ for (int t = 0; t < params.adam.n_iter; ++t) {
+ GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
+
+ GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
+ GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
+ GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
+
+ for (int i = 0; i < np; ++i) {
+ GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
+ ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
+ }
+
+ const int64_t t_start_wall = ggml_time_us();
+ const int64_t t_start_cpu = ggml_cycles();
+ UNUSED(t_start_wall);
+ UNUSED(t_start_cpu);
+
+ {
+ // update the gradient
+ ggml_opt_get_grad(np, ps, g1);
+
+ // m_t = beta1*m_t-1 + (1 - beta1)*g_t
+ ggml_vec_scale_f32(nx, m, beta1);
+ ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
+
+ // g2 = g1^2
+ ggml_vec_sqr_f32 (nx, g2, g1);
+
+ // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
+ ggml_vec_scale_f32(nx, v, beta2);
+ ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
+
+ // m^hat = m_t / (1 - beta1^t)
+ // v^hat = v_t / (1 - beta2^t)
+ // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
+ ggml_vec_cpy_f32 (nx, mh, m);
+ ggml_vec_cpy_f32 (nx, vh, v);
+
+ ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
+ ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
+
+ ggml_vec_sqrt_f32 (nx, vh, vh);
+ ggml_vec_acc1_f32 (nx, vh, eps);
+
+ ggml_vec_div_f32 (nx, mh, mh, vh);
+ ggml_vec_sub_f32 (nx, x, x, mh);
+
+ // update the parameters
+ ggml_opt_set_params(np, ps, x);
+ }
+
+ ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx, gb);
+
+ const float fx = ggml_get_f32_1d(f, 0);
+
+ // check convergence
+ if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
+ GGML_PRINT_DEBUG("converged\n");
+
+ return GGML_OPT_OK;
+ }
+
+ // delta-based convergence test
+ if (pf != NULL) {
+ // need at least params.past iterations to start checking for convergence
+ if (params.past <= t) {
+ const float rate = (pf[t%params.past] - fx)/fx;
+
+ if (fabs(rate) < params.delta) {
+ return GGML_OPT_OK;
+ }
+ }
+
+ pf[t%params.past] = fx;
+ }
+
+ // check for improvement
+ if (params.max_no_improvement > 0) {
+ if (fx_best > fx) {
+ fx_best = fx;
+ n_no_improvement = 0;
+ } else {
+ ++n_no_improvement;
+
+ if (n_no_improvement >= params.max_no_improvement) {
+ return GGML_OPT_OK;
+ }
+ }
+ }
+
+ fx_prev = fx;
+
+ {
+ const int64_t t_end_cpu = ggml_cycles();
+ GGML_PRINT_DEBUG("time iter: %5.3f s\n", (t_end_cpu - t_start_cpu)/CLOCKS_PER_SEC);
+ UNUSED(t_end_cpu);
+
+ const int64_t t_end_wall = ggml_time_us();
+ GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
+ UNUSED(t_end_wall);
+ }
+ }
+
+ return GGML_OPT_DID_NOT_CONVERGE;
+}
+
+//
+// L-BFGS
+//
+// the L-BFGS implementation below is based on the following implementation:
+//
+// https://github.com/chokkan/liblbfgs
+//
+
+struct ggml_lbfgs_iteration_data {
+ float alpha;
+ float ys;
+ float * s;
+ float * y;
+};
+
+static enum ggml_opt_result linesearch_backtracking(
+ struct ggml_context * ctx,
+ const struct ggml_opt_params * params,
+ int nx,
+ float * x,
+ float * fx,
+ float * g,
+ float * d,
+ float * step,
+ const float * xp,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ const int np,
+ struct ggml_tensor * ps[]) {
+ int count = 0;
+
+ float width = 0.0f;
+ float dg = 0.0f;
+ float finit = 0.0f;
+ float dginit = 0.0f;
+ float dgtest = 0.0f;
+
+ const float dec = 0.5f;
+ const float inc = 2.1f;
+
+ if (*step <= 0.) {
+ return GGML_LINESEARCH_INVALID_PARAMETERS;
+ }
+
+ // compute the initial gradient in the search direction
+ ggml_vec_dot_f32(nx, &dginit, g, d);
+
+ // make sure that d points to a descent direction
+ if (0 < dginit) {
+ return GGML_LINESEARCH_FAIL;
+ }
+
+ // initialize local variables
+ finit = *fx;
+ dgtest = params->lbfgs.ftol*dginit;
+
+ while (true) {
+ ggml_vec_cpy_f32(nx, x, xp);
+ ggml_vec_mad_f32(nx, x, d, *step);
+
+ // evaluate the function and gradient values
+ {
+ ggml_opt_set_params(np, ps, x);
+
+ ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx, gb);
+
+ ggml_opt_get_grad(np, ps, g);
+
+ *fx = ggml_get_f32_1d(f, 0);
+ }
+
+ ++count;
+
+ if (*fx > finit + (*step)*dgtest) {
+ width = dec;
+ } else {
+ // Armijo condition is satisfied
+ if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
+ return count;
+ }
+
+ ggml_vec_dot_f32(nx, &dg, g, d);
+
+ // check the Wolfe condition
+ if (dg < params->lbfgs.wolfe * dginit) {
+ width = inc;
+ } else {
+ if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
+ // regular Wolfe conditions
+ return count;
+ }
+
+ if(dg > -params->lbfgs.wolfe*dginit) {
+ width = dec;
+ } else {
+ // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
+ return count;
+ }
+ return count;
+ }
+ }
+
+ if (*step < params->lbfgs.min_step) {
+ return GGML_LINESEARCH_MINIMUM_STEP;
+ }
+ if (*step > params->lbfgs.max_step) {
+ return GGML_LINESEARCH_MAXIMUM_STEP;
+ }
+ if (params->lbfgs.max_linesearch <= count) {
+ return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
+ }
+
+ (*step) *= width;
+ }
+
+ return GGML_LINESEARCH_FAIL;
+}
+
+enum ggml_opt_result ggml_opt_lbfgs(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb) {
+ if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
+ params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
+ if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
+ return GGML_OPT_INVALID_WOLFE;
+ }
+ }
+
+ gf->n_threads = params.n_threads;
+ gb->n_threads = params.n_threads;
+
+ const int m = params.lbfgs.m;
+
+ // these will store the parameters we want to optimize
+ struct ggml_tensor * ps[GGML_MAX_PARAMS];
+
+ int np = 0;
+ int nx = 0;
+ for (int i = 0; i < gf->n_nodes; ++i) {
+ if (gf->nodes[i]->is_param) {
+ GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
+
+ assert(np < GGML_MAX_PARAMS);
+
+ ps[np++] = gf->nodes[i];
+ nx += ggml_nelements(gf->nodes[i]);
+ }
+ }
+
+ float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
+ float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
+ float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
+ float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
+ float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
+
+ float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
+
+ float fx = 0.0f; // cost function value
+ float xnorm = 0.0f; // ||x||
+ float gnorm = 0.0f; // ||g||
+ float step = 0.0f;
+
+ // initialize x from the graph nodes
+ ggml_opt_get_params(np, ps, x);
+
+ // the L-BFGS memory
+ struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
+
+ for (int i = 0; i < m; ++i) {
+ lm[i].alpha = 0.0f;
+ lm[i].ys = 0.0f;
+ lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
+ lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
+ }
+
+ // evaluate the function value and its gradient
+ {
+ ggml_opt_set_params(np, ps, x);
+
+ ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx, gb);
+
+ ggml_opt_get_grad(np, ps, g);
+
+ fx = ggml_get_f32_1d(f, 0);
+ }
+
+ if (pf) {
+ pf[0] = fx;
+ }
+
+ float fx_best = fx;
+
+ // search direction = -gradient
+ ggml_vec_neg_f32(nx, d, g);
+
+ // ||x||, ||g||
+ ggml_vec_norm_f32(nx, &xnorm, x);
+ ggml_vec_norm_f32(nx, &gnorm, g);
+
+ if (xnorm < 1.0f) {
+ xnorm = 1.0f;
+ }
+
+ // already optimized
+ if (gnorm/xnorm <= params.lbfgs.eps) {
+ return GGML_OPT_OK;
+ }
+
+ // initial step
+ ggml_vec_norm_inv_f32(nx, &step, d);
+
+ int j = 0;
+ int k = 1;
+ int ls = 0;
+ int end = 0;
+ int bound = 0;
+ int n_no_improvement = 0;
+
+ float ys = 0.0f;
+ float yy = 0.0f;
+ float beta = 0.0f;
+
+ while (true) {
+ // store the current position and gradient vectors
+ ggml_vec_cpy_f32(nx, xp, x);
+ ggml_vec_cpy_f32(nx, gp, g);
+
+ ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
+
+ if (ls < 0) {
+ // linesearch failed - go back to the previous point and return
+ ggml_vec_cpy_f32(nx, x, xp);
+ ggml_vec_cpy_f32(nx, g, gp);
+
+ return ls;
+ }
+
+ ggml_vec_norm_f32(nx, &xnorm, x);
+ ggml_vec_norm_f32(nx, &gnorm, g);
+
+ GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
+
+ if (xnorm < 1.0) {
+ xnorm = 1.0;
+ }
+ if (gnorm/xnorm <= params.lbfgs.eps) {
+ // converged
+ return GGML_OPT_OK;
+ }
+
+ // delta-based convergence test
+ if (pf != NULL) {
+ // need at least params.past iterations to start checking for convergence
+ if (params.past <= k) {
+ const float rate = (pf[k%params.past] - fx)/fx;
+
+ if (fabs(rate) < params.delta) {
+ return GGML_OPT_OK;
+ }
+ }
+
+ pf[k%params.past] = fx;
+ }
+
+ // check for improvement
+ if (params.max_no_improvement > 0) {
+ if (fx < fx_best) {
+ fx_best = fx;
+ n_no_improvement = 0;
+ } else {
+ n_no_improvement++;
+
+ if (n_no_improvement >= params.max_no_improvement) {
+ return GGML_OPT_OK;
+ }
+ }
+ }
+
+ if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
+ // reached the maximum number of iterations
+ return GGML_OPT_DID_NOT_CONVERGE;
+ }
+
+ // update vectors s and y:
+ // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
+ // y_{k+1} = g_{k+1} - g_{k}.
+ //
+ ggml_vec_sub_f32(nx, lm[end].s, x, xp);
+ ggml_vec_sub_f32(nx, lm[end].y, g, gp);
+
+ // compute scalars ys and yy:
+ // ys = y^t \cdot s -> 1 / \rho.
+ // yy = y^t \cdot y.
+ //
+ ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
+ ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
+
+ lm[end].ys = ys;
+
+ // find new search direction
+ // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
+
+ bound = (m <= k) ? m : k;
+ k++;
+ end = (end + 1)%m;
+
+ // initialize search direction with -g
+ ggml_vec_neg_f32(nx, d, g);
+
+ j = end;
+ for (int i = 0; i < bound; ++i) {
+ j = (j + m - 1) % m;
+ // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
+ ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
+ lm[j].alpha /= lm[j].ys;
+ // q_{i} = q_{i+1} - \alpha_{i} y_{i}
+ ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
+ }
+
+ ggml_vec_scale_f32(nx, d, ys/yy);
+
+ for (int i = 0; i < bound; ++i) {
+ // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
+ ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
+ beta /= lm[j].ys;
+ // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
+ ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
+ j = (j + 1)%m;
+ }
+
+ step = 1.0;
+ }
+
+ return GGML_OPT_DID_NOT_CONVERGE;
+}
+
+struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
+ struct ggml_opt_params result;
+
+ switch (type) {
+ case GGML_OPT_ADAM:
+ {
+ result = (struct ggml_opt_params) {
+ .type = GGML_OPT_ADAM,
+ .n_threads = 1,
+ .past = 0,
+ .delta = 1e-5f,
+
+ .max_no_improvement = 100,
+
+ .print_forward_graph = true,
+ .print_backward_graph = true,
+
+ .adam = {
+ .n_iter = 10000,
+ .alpha = 0.001f,
+ .beta1 = 0.9f,
+ .beta2 = 0.999f,
+ .eps = 1e-8f,
+ .eps_f = 1e-5f,
+ .eps_g = 1e-3f,
+ },
+ };
+ } break;
+ case GGML_OPT_LBFGS:
+ {
+ result = (struct ggml_opt_params) {
+ .type = GGML_OPT_LBFGS,
+ .n_threads = 1,
+ .past = 0,
+ .delta = 1e-5f,
+
+ .max_no_improvement = 0,
+
+ .print_forward_graph = true,
+ .print_backward_graph = true,
+
+ .lbfgs = {
+ .m = 6,
+ .n_iter = 100,
+ .max_linesearch = 20,
+
+ .eps = 1e-5f,
+ .ftol = 1e-4f,
+ .wolfe = 0.9f,
+ .min_step = 1e-20f,
+ .max_step = 1e+20f,
+
+ .linesearch = GGML_LINESEARCH_DEFAULT,
+ },
+ };
+ } break;
+ }
+
+ return result;
+}
+
+enum ggml_opt_result ggml_opt(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f) {
+ bool free_ctx = false;
+ if (ctx == NULL) {
+ struct ggml_init_params params_ctx = {
+ .mem_size = 16*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ ctx = ggml_init(params_ctx);
+ if (ctx == NULL) {
+ return GGML_OPT_NO_CONTEXT;
+ }
+
+ free_ctx = true;
+ }
+
+ enum ggml_opt_result result = GGML_OPT_OK;
+
+ // build forward + backward compute graphs
+ struct ggml_cgraph gf = ggml_build_forward (f);
+ struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
+
+ switch (params.type) {
+ case GGML_OPT_ADAM:
+ {
+ result = ggml_opt_adam(ctx, params, f, &gf, &gb);
+ } break;
+ case GGML_OPT_LBFGS:
+ {
+ result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
+ } break;
+ }
+
+ if (params.print_forward_graph) {
+ ggml_graph_print (&gf);
+ ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
+ }
+
+ if (params.print_backward_graph) {
+ ggml_graph_print (&gb);
+ ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
+ }
+
+ if (free_ctx) {
+ ggml_free(ctx);
+ }
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
--- /dev/null
+#
+# test-vec0
+
+set(TEST_TARGET test-vec0)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test-vec1 (x86)
+if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86")
+ set(TEST_TARGET test-vec1)
+ add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+ target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+ add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+ set_target_properties(${TEST_TARGET} PROPERTIES COMPILE_FLAGS "-mavx -mavx2 -mfma -mf16c")
+endif()
+
+#
+# test-vec2 (arm)
+if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm")
+ set(TEST_TARGET test-vec2)
+ add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+ target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+ add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+endif()
+
+#
+# test-grad0
+
+set(TEST_TARGET test-grad0)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test-mul-mat
+
+set(TEST_TARGET test-mul-mat0)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test0
+
+set(TEST_TARGET test0)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test1
+
+set(TEST_TARGET test1)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test2
+
+set(TEST_TARGET test2)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
+
+#
+# test3
+
+set(TEST_TARGET test3)
+add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml)
+add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+#define MAX_NARGS 2
+
+float frand() {
+ return (float)rand()/(float)RAND_MAX;
+}
+
+int irand(int n) {
+ return rand()%n;
+}
+
+void get_random_dims(int * dims, int ndims) {
+ dims[0] = dims[1] = dims[2] = dims[3] = 1;
+
+ for (int i = 0; i < ndims; i++) {
+ dims[i] = 1 + irand(4);
+ }
+}
+
+struct ggml_tensor * get_random_tensor(
+ struct ggml_context * ctx0,
+ int ndims,
+ int ne[],
+ float fmin,
+ float fmax) {
+ struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
+
+ switch (ndims) {
+ case 1:
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
+ }
+ break;
+ case 2:
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ break;
+ case 3:
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ break;
+ case 4:
+ for (int i3 = 0; i3 < ne[3]; i3++) {
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ }
+ break;
+ default:
+ assert(false);
+ };
+
+ return result;
+}
+
+float get_element(const struct ggml_tensor * t, int idx) {
+ return ((float *)t->data)[idx];
+}
+
+void set_element(struct ggml_tensor * t, int idx, float value) {
+ ((float *)t->data)[idx] = value;
+}
+
+bool check_gradient(
+ const char * op_name,
+ struct ggml_context * ctx0,
+ struct ggml_tensor * x[],
+ struct ggml_tensor * f,
+ int ndims,
+ int nargs,
+ float eps,
+ float max_error_abs,
+ float max_error_rel) {
+
+ struct ggml_cgraph gf = ggml_build_forward (f);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_graph_compute(ctx0, &gf);
+ ggml_graph_reset (&gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx0, &gb);
+
+ ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
+
+ for (int i = 0; i < nargs; ++i) {
+ const int nelements = ggml_nelements(x[i]);
+ for (int k = 0; k < nelements; ++k) {
+ // compute gradient using finite differences
+ const float x0 = get_element(x[i], k);
+
+ set_element(x[i], k, x0 + eps);
+ ggml_graph_compute(ctx0, &gf);
+
+ const float f0 = ggml_get_f32_1d(f, 0);
+
+ set_element(x[i], k, x0 - eps);
+ ggml_graph_compute(ctx0, &gf);
+
+ const float f1 = ggml_get_f32_1d(f, 0);
+
+ const float g0 = (f0 - f1)/(2.0f*eps);
+
+ set_element(x[i], k, x0);
+
+ // compute gradient using backward graph
+ ggml_graph_reset (&gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx0, &gb);
+
+ const float g1 = get_element(x[i]->grad, k);
+
+ const float error_abs = fabsf(g0 - g1);
+ const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
+
+ if (error_abs > max_error_abs || error_rel > max_error_rel) {
+ printf("%s: ndims=%d, i=%d, k=%d, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n",
+ op_name, ndims, i, k, g0, g1, error_abs, error_rel);
+ assert(false);
+ }
+ }
+ }
+
+ return true;
+}
+
+// TODO: clean-up this ..
+bool check_mat_mul(
+ const struct ggml_tensor * y,
+ const struct ggml_tensor * x0,
+ const struct ggml_tensor * x1) {
+ float * dst = (float *) y->data;
+ float * src0 = (float *) x0->data;
+ float * src1 = (float *) x1->data;
+
+ const int nc = x0->ne[1];
+ const int nr = x1->ne[1];
+ const int nk = x0->ne[0];
+
+ printf("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk);
+
+ printf("x0:\n");
+ for (int j = 0; j < x0->ne[1]; ++j) {
+ for (int i = 0; i < x0->ne[0]; ++i) {
+ printf("%6.3f ", src0[j*nk + i]);
+ }
+ printf("\n");
+ }
+ printf("\n");
+
+ printf("x1:\n");
+ for (int j = 0; j < x1->ne[1]; ++j) {
+ for (int i = 0; i < x1->ne[0]; ++i) {
+ printf("%6.3f ", src1[j*nk + i]);
+ }
+ printf("\n");
+ }
+ printf("\n");
+
+ printf("y: n_dims = %d, (%d, %d)\n", y->n_dims, y->ne[0], y->ne[1]);
+ for (int j = 0; j < y->ne[1]; ++j) {
+ for (int i = 0; i < y->ne[0]; ++i) {
+ printf("%6.3f ", dst[j*nr + i]);
+ }
+ printf("\n");
+ }
+
+ for (int i = 0; i < nr; ++i) {
+ for (int j = 0; j < nc; ++j) {
+ float sum = 0.0f;
+
+ for (int k = 0; k < nk; ++k) {
+ sum += src0[j*nk + k]*src1[i*nk + k];
+ }
+
+ if (fabsf(dst[i*nc + j] - sum) > 1e-5f) {
+ printf("check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum);
+ assert(false);
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 128*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ int ne[4];
+
+ for (int iter = 0; iter < 1000; ++iter) {
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ get_random_dims(ne, 4);
+
+ struct ggml_tensor * x[MAX_NARGS];
+
+ // add
+ {
+ const int nargs = 2;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
+
+ check_gradient("add", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
+ }
+ }
+
+ // sub
+ {
+ const int nargs = 2;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1]));
+
+ check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
+ }
+ }
+
+ // mul
+ {
+ const int nargs = 2;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1]));
+
+ check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
+ }
+ }
+
+ // div
+ {
+ const int nargs = 2;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1]));
+
+ check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-2f);
+ }
+ }
+
+ // sqr
+ {
+ const int nargs = 1;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0]));
+
+ check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
+ }
+ }
+
+ // sqrt
+ {
+ const int nargs = 1;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0]));
+
+ check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f);
+ }
+ }
+
+ // sum
+ {
+ const int nargs = 1;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ for (int i = 0; i < nargs; ++i) {
+ x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ggml_set_param(ctx0, x[i]);
+ }
+
+ struct ggml_tensor * f = ggml_sum(ctx0, x[0]);
+
+ check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
+ }
+ }
+
+ // abs (finite differences do not work)
+ //{
+ // const int nargs = 1;
+
+ // for (int ndims = 1; ndims <= 2; ++ndims) {
+ // for (int i = 0; i < nargs; ++i) {
+ // x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ // ggml_set_param(ctx0, x[i]);
+ // }
+
+ // struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0]));
+
+ // check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f);
+ // }
+ //}
+
+ // mul_mat
+ {
+ const int nargs = 1;
+
+ for (int ndims = 1; ndims <= 2; ++ndims) {
+ x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ {
+ int ne2[4];
+ get_random_dims(ne2, 4);
+ ne2[0] = ne[0];
+ x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
+ }
+
+ ggml_set_param(ctx0, x[0]);
+
+ struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
+ struct ggml_tensor * f = ggml_sum(ctx0, m);
+
+ printf("testing: mul_mat, [%d, %d] * [%d, %d]\n",
+ x[1]->ne[0], x[1]->ne[1], x[0]->ne[0], x[0]->ne[1]);
+
+ check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
+ check_mat_mul(m, x[1], x[0]);
+ }
+ }
+
+ ggml_free(ctx0);
+ }
+
+ return 0;
+}
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+#define MAX_NARGS 2
+
+float frand() {
+ return (float)rand()/(float)RAND_MAX;
+}
+
+int irand(int n) {
+ return rand()%n;
+}
+
+void get_random_dims(int * dims, int ndims) {
+ dims[0] = dims[1] = dims[2] = dims[3] = 1;
+
+ for (int i = 0; i < ndims; i++) {
+ dims[i] = 1 + irand(4);
+ }
+}
+
+struct ggml_tensor * get_random_tensor(
+ struct ggml_context * ctx0,
+ int ndims,
+ int ne[],
+ float fmin,
+ float fmax) {
+ struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
+
+ switch (ndims) {
+ case 1:
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
+ }
+ break;
+ case 2:
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ break;
+ case 3:
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ break;
+ case 4:
+ for (int i3 = 0; i3 < ne[3]; i3++) {
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ }
+ break;
+ default:
+ assert(false);
+ };
+
+ return result;
+}
+
+float get_element(const struct ggml_tensor * t, int idx) {
+ return ((float *)t->data)[idx];
+}
+
+void set_element(struct ggml_tensor * t, int idx, float value) {
+ ((float *)t->data)[idx] = value;
+}
+
+bool check_gradient(
+ const char * op_name,
+ struct ggml_context * ctx0,
+ struct ggml_tensor * x[],
+ struct ggml_tensor * f,
+ int ndims,
+ int nargs,
+ float eps,
+ float max_error_abs,
+ float max_error_rel) {
+
+ struct ggml_cgraph gf = ggml_build_forward (f);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_graph_compute(ctx0, &gf);
+ ggml_graph_reset (&gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx0, &gb);
+
+ ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
+
+ for (int i = 0; i < nargs; ++i) {
+ const int nelements = ggml_nelements(x[i]);
+ for (int k = 0; k < nelements; ++k) {
+ // compute gradient using finite differences
+ const float x0 = get_element(x[i], k);
+
+ set_element(x[i], k, x0 + eps);
+ ggml_graph_compute(ctx0, &gf);
+
+ const float f0 = ggml_get_f32_1d(f, 0);
+
+ set_element(x[i], k, x0 - eps);
+ ggml_graph_compute(ctx0, &gf);
+
+ const float f1 = ggml_get_f32_1d(f, 0);
+
+ const float g0 = (f0 - f1)/(2.0f*eps);
+
+ set_element(x[i], k, x0);
+
+ // compute gradient using backward graph
+ ggml_graph_reset (&gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(ctx0, &gb);
+
+ const float g1 = get_element(x[i]->grad, k);
+
+ const float error_abs = fabsf(g0 - g1);
+ const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
+
+ if (error_abs > max_error_abs || error_rel > max_error_rel) {
+ printf("%s: ndims=%d, i=%d, k=%d, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n",
+ op_name, ndims, i, k, g0, g1, error_abs, error_rel);
+ assert(false);
+ }
+ }
+ }
+
+ return true;
+}
+
+
+float mat_get(const struct ggml_tensor * t, int i0, int i1, int i2, int i3) {
+ const size_t nb0 = t->nb[0];
+ const size_t nb1 = t->nb[1];
+ const size_t nb2 = t->nb[2];
+ const size_t nb3 = t->nb[3];
+
+ return
+ *((float*) ((char*)t->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
+}
+
+bool check_mat_mul(
+ const struct ggml_tensor * y,
+ const struct ggml_tensor * x0,
+ const struct ggml_tensor * x1) {
+ float * dst = (float *) y->data;
+ float * src0 = (float *) x0->data;
+ float * src1 = (float *) x1->data;
+
+ const int n00 = x0->ne[0];
+ const int n10 = x0->ne[1];
+ const int n20 = x0->ne[2];
+ const int n30 = x0->ne[3];
+
+ const int n01 = x1->ne[0];
+ const int n11 = x1->ne[1];
+ const int n21 = x1->ne[2];
+ const int n31 = x1->ne[3];
+
+ const int n02 = y->ne[0];
+ const int n12 = y->ne[1];
+ const int n22 = y->ne[2];
+ const int n32 = y->ne[3];
+
+ printf("x0: [%d, %d, %d, %d]\n", n00, n10, n20, n30);
+ for (int j = 0; j < n10; ++j) {
+ for (int i = 0; i < n00; ++i) {
+ printf("%6.3f ", mat_get(x0, i, j, 0, 0));
+ }
+ printf("\n");
+ }
+ printf("\n");
+
+ printf("x1: [%d, %d, %d, %d]\n", n01, n11, n21, n31);
+ for (int j = 0; j < n11; ++j) {
+ for (int i = 0; i < n01; ++i) {
+ printf("%6.3f ", mat_get(x1, i, j, 0, 0));
+ }
+ printf("\n");
+ }
+ printf("\n");
+
+ printf("y: [%d, %d, %d, %d]\n", n02, n12, n22, n32);
+ for (int j = 0; j < n12; ++j) {
+ for (int i = 0; i < n02; ++i) {
+ printf("%6.3f ", mat_get(y, i, j, 0, 0));
+ }
+ printf("\n");
+ }
+
+ for (int i3 = 0; i3 < n32; ++i3) {
+ for (int i2 = 0; i2 < n22; ++i2) {
+ for (int i1 = 0; i1 < n12; ++i1) {
+ for (int i0 = 0; i0 < n02; ++i0) {
+ float sum = 0.0f;
+ for (int k = 0; k < n00; ++k) {
+ sum += mat_get(x0, k, i0, i2, i3) * mat_get(x1, k, i1, i2, i3);
+ }
+ if (fabsf(sum - mat_get(y, i0, i1, i2, i3)) > 1e-5) {
+ printf("error: i0=%d, i1=%d, i2=%d, i3=%d, sum=%f, y=%f\n",
+ i0, i1, i2, i3, sum, mat_get(y, i0, i1, i2, i3));
+ assert(false);
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 128*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ int ne[4];
+
+ for (int iter = 0; iter < 500; ++iter) {
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ get_random_dims(ne, 4);
+
+ struct ggml_tensor * x[MAX_NARGS];
+
+ // mul_mat
+ {
+ const int nargs = 1;
+
+ for (int ndims = 1; ndims <= 4; ++ndims) {
+ x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ne[1] = rand()%4 + 1;
+ x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+
+ ggml_set_param(ctx0, x[0]);
+
+ struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
+ struct ggml_tensor * f = ggml_sum(ctx0, m);
+
+ printf("testing: mul_mat, [%d, %d, %d, %d] = [%d, %d, %d, %d] * [%d, %d, %d, %d]\n",
+ m->ne[0], m->ne[1], m->ne[2], m->ne[3],
+ x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
+ x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
+
+ assert(m->ne[0] == x[1]->ne[1]);
+ assert(m->ne[1] == x[0]->ne[1]);
+ assert(m->ne[2] == x[0]->ne[2]);
+ assert(m->ne[3] == x[0]->ne[3]);
+
+ if (ndims <= 2) {
+ check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
+ } else {
+ struct ggml_cgraph gf = ggml_build_forward(m);
+ ggml_graph_compute(ctx0, &gf);
+ }
+
+ check_mat_mul(m, x[1], x[0]);
+ }
+ }
+
+ // mul_mat (transposed)
+ {
+ const int nargs = 1;
+
+ for (int ndims = 2; ndims <= 4; ++ndims) {
+ x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
+ ne[1] = ne[0];
+ ne[0] = rand()%4 + 1;
+ x[1] = ggml_transpose(ctx0, get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f));
+
+ ggml_set_param(ctx0, x[0]);
+
+ struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
+ struct ggml_tensor * f = ggml_sum(ctx0, m);
+
+ printf("testing: mul_mat, [%d, %d, %d, %d] = [%d, %d, %d, %d] * [%d, %d, %d, %d]\n",
+ m->ne[0], m->ne[1], m->ne[2], m->ne[3],
+ x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
+ x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
+
+ assert(m->ne[0] == x[1]->ne[1]);
+ assert(m->ne[1] == x[0]->ne[1]);
+ assert(m->ne[2] == x[0]->ne[2]);
+ assert(m->ne[3] == x[0]->ne[3]);
+
+ if (ndims <= 2) {
+ check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
+ } else {
+ struct ggml_cgraph gf = ggml_build_forward(m);
+ ggml_graph_compute(ctx0, &gf);
+ }
+
+ check_mat_mul(m, x[1], x[0]);
+ }
+ }
+ ggml_free(ctx0);
+ }
+
+ return 0;
+}
--- /dev/null
+#include <stdio.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <time.h>
+
+const int N = 1 << 14;
+const int M = 1 << 14;
+
+void mul_mat_vec_f32_0(
+ const float * src0,
+ const float * src1,
+ float * dst,
+ unsigned nrows,
+ unsigned ncols) {
+ for (unsigned i = 0; i < nrows; i++) {
+ float sum = 0.0f;
+ for (unsigned j = 0; j < ncols; j++) {
+ sum += src0[i*ncols + j]*src1[j];
+ }
+ dst[i] = sum;
+ }
+}
+
+typedef float afloat __attribute__ ((__aligned__(32)));
+void mul_mat_vec_f32_1(
+ const afloat *restrict src0,
+ const afloat *restrict src1,
+ afloat *restrict dst,
+ unsigned nrows,
+ unsigned ncols) {
+ for (unsigned i = 0; i < nrows; i++) {
+ const afloat * restrict row = src0 + i*ncols;
+ const afloat * restrict col = src1;
+
+ float sum = 0.0f;
+
+ for (unsigned j = 0; j < ncols; j++) {
+ sum += *row++ * *col++;
+ }
+
+ dst[i] = sum;
+
+ //float sum[8] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
+
+ //for (unsigned j = 0; j < ncols; j += 8) {
+ // sum[0] += row[0]*col[0];
+ // sum[1] += row[1]*col[1];
+ // sum[2] += row[2]*col[2];
+ // sum[3] += row[3]*col[3];
+ // sum[4] += row[4]*col[4];
+ // sum[5] += row[5]*col[5];
+ // sum[6] += row[6]*col[6];
+ // sum[7] += row[7]*col[7];
+
+ // row += 8;
+ // col += 8;
+ //}
+
+ //dst[i] = sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
+ }
+}
+
+void mul_mat_vec_f32_2(
+ const void * src0,
+ const void * src1,
+ void * dst,
+ unsigned nrows,
+ unsigned ncols) {
+ void * d = dst;
+ for (unsigned i = 0; i < nrows; i++) {
+ float sum = 0.0f;
+
+ const void * row = src0 + i*ncols*sizeof(float);
+ const void * col = src1;
+ for (unsigned j = 0; j < ncols; j++) {
+ sum += (*(float *)row) * (*(float *)col);
+ row += sizeof(float);
+ col += sizeof(float);
+ }
+ *(float *)d = sum;
+ d += sizeof(float);
+ }
+}
+
+int main(int argc, const char ** argv) {
+ //float * src0 = (float *)malloc(sizeof(float)*N*M);
+ //float * src1 = (float *)malloc(sizeof(float)*M);
+ //float * dst = (float *)malloc(sizeof(float)*N);
+
+ afloat * src0 = (float *)(aligned_alloc(32, sizeof(float)*N*M));
+ afloat * src1 = (float *)(aligned_alloc(32, sizeof(float)*M));
+ afloat * dst = (float *)(aligned_alloc(32, sizeof(float)*N));
+
+ for (unsigned i = 0; i < N*M; i++) {
+ src0[i] = i;
+ }
+
+ for (unsigned i = 0; i < M; i++) {
+ src1[i] = i;
+ }
+
+ const int nIter = 10;
+
+ const clock_t start = clock();
+
+ double sum = 0.0f;
+ for (int i = 0; i < nIter; i++) {
+ //mul_mat_vec_f32_0(src0, src1, dst, N, M);
+ mul_mat_vec_f32_1(src0, src1, dst, N, M);
+ //mul_mat_vec_f32_2(src0, src1, dst, N, M);
+ for (unsigned i = 0; i < N; i++) {
+ sum += dst[i];
+ }
+ }
+
+ {
+ const clock_t end = clock();
+ printf("%s: elapsed ticks: %ld\n", __func__, end - start);
+ }
+
+ printf("%f\n", sum);
+
+ return 0;
+}
--- /dev/null
+#include <stdint.h>
+#include <stdio.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <time.h>
+#include <math.h>
+
+#include <sys/time.h>
+
+#include <immintrin.h>
+
+const int N = 1 << 14;
+const int M = 768;
+
+//
+// naive implementation
+//
+
+void mul_mat_vec_f32_0(
+ const float * restrict src0,
+ const float * restrict src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+ for (int i = 0; i < nrows; i++) {
+ float sum = 0.0f;
+ for (int j = 0; j < ncols; j++) {
+ sum += src0[i*ncols + j]*src1[j];
+ }
+ dst[i] = sum;
+ }
+}
+
+//
+// SIMD with 8 32-bit floats
+//
+
+float reduce_vector8_0(__m256 v) {
+ __m128 v1 = _mm256_extractf128_ps(v, 0);
+ __m128 v2 = _mm256_extractf128_ps(v, 1);
+ __m128 v3 = _mm_add_ps(v1, v2);
+ __m128 v4 = _mm_shuffle_ps(v3, v3, 0x4e);
+ __m128 v5 = _mm_add_ps(v3, v4);
+ __m128 v6 = _mm_shuffle_ps(v5, v5, 0x11);
+ __m128 v7 = _mm_add_ps(v5, v6);
+ return _mm_cvtss_f32(v7);
+}
+
+// vectorized implementation using AVX
+void mul_mat_vec_f32_1(
+ const float * restrict src0,
+ const float * restrict src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols8 = ncols & ~7;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum = _mm256_setzero_ps();
+ for (int j = 0; j < ncols8; j += 8) {
+ __m256 a = _mm256_loadu_ps(src0 + i*ncols + j);
+ __m256 b = _mm256_loadu_ps(src1 + j);
+ __m256 c = _mm256_mul_ps(a, b);
+ sum = _mm256_add_ps(sum, c);
+ }
+ dst[i] = reduce_vector8_0(sum);
+
+ for (int j = ncols8; j < ncols; j++) {
+ dst[i] += src0[i*ncols + j]*src1[j];
+ }
+ }
+}
+
+void mul_mat_vec_f32_2(
+ const float * restrict src0,
+ const float * restrict src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols32 = ncols & ~31;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+ __m256 sum2 = _mm256_setzero_ps();
+ __m256 sum3 = _mm256_setzero_ps();
+
+ const float * restrict src0_row = src0 + i*ncols;
+ for (int j = 0; j < ncols32; j += 32) {
+ __m256 a0 = _mm256_loadu_ps(src0_row + j + 0);
+ __m256 a1 = _mm256_loadu_ps(src0_row + j + 8);
+ __m256 a2 = _mm256_loadu_ps(src0_row + j + 16);
+ __m256 a3 = _mm256_loadu_ps(src0_row + j + 24);
+ __m256 b0 = _mm256_loadu_ps(src1 + j + 0);
+ __m256 b1 = _mm256_loadu_ps(src1 + j + 8);
+ __m256 b2 = _mm256_loadu_ps(src1 + j + 16);
+ __m256 b3 = _mm256_loadu_ps(src1 + j + 24);
+ sum0 = _mm256_fmadd_ps(a0, b0, sum0);
+ sum1 = _mm256_fmadd_ps(a1, b1, sum1);
+ sum2 = _mm256_fmadd_ps(a2, b2, sum2);
+ sum3 = _mm256_fmadd_ps(a3, b3, sum3);
+ }
+ dst[i] = reduce_vector8_0(_mm256_add_ps(_mm256_add_ps(sum0, sum1), _mm256_add_ps(sum2, sum3)));
+
+ for (int j = ncols32; j < ncols; j++) {
+ dst[i] += src0[i*ncols + j]*src1[j];
+ }
+ }
+}
+
+//
+// SIMD with 8 16-bit floats
+//
+
+static inline float fp32_from_bits(uint32_t w) {
+#if defined(__OPENCL_VERSION__)
+ return as_float(w);
+#elif defined(__CUDA_ARCH__)
+ return __uint_as_float((unsigned int) w);
+#elif defined(__INTEL_COMPILER)
+ return _castu32_f32(w);
+#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
+ return _CopyFloatFromInt32((__int32) w);
+#else
+ union {
+ uint32_t as_bits;
+ float as_value;
+ } fp32 = { w };
+ return fp32.as_value;
+#endif
+}
+
+static inline uint32_t fp32_to_bits(float f) {
+#if defined(__OPENCL_VERSION__)
+ return as_uint(f);
+#elif defined(__CUDA_ARCH__)
+ return (uint32_t) __float_as_uint(f);
+#elif defined(__INTEL_COMPILER)
+ return _castf32_u32(f);
+#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
+ return (uint32_t) _CopyInt32FromFloat(f);
+#else
+ union {
+ float as_value;
+ uint32_t as_bits;
+ } fp32 = { f };
+ return fp32.as_bits;
+#endif
+}
+
+/*
+ * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
+ * a 32-bit floating-point number in IEEE single-precision format.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline float fp16_ieee_to_fp32_value(uint16_t h) {
+ /*
+ * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
+ * +---+-----+------------+-------------------+
+ * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
+ * +---+-----+------------+-------------------+
+ * Bits 31 26-30 16-25 0-15
+ *
+ * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
+ */
+ const uint32_t w = (uint32_t) h << 16;
+ /*
+ * Extract the sign of the input number into the high bit of the 32-bit word:
+ *
+ * +---+----------------------------------+
+ * | S |0000000 00000000 00000000 00000000|
+ * +---+----------------------------------+
+ * Bits 31 0-31
+ */
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ /*
+ * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
+ *
+ * +-----+------------+---------------------+
+ * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
+ * +-----+------------+---------------------+
+ * Bits 27-31 17-26 0-16
+ */
+ const uint32_t two_w = w + w;
+
+ /*
+ * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
+ * of a single-precision floating-point number:
+ *
+ * S|Exponent | Mantissa
+ * +-+---+-----+------------+----------------+
+ * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
+ * +-+---+-----+------------+----------------+
+ * Bits | 23-31 | 0-22
+ *
+ * Next, there are some adjustments to the exponent:
+ * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
+ * formats (0x7F - 0xF = 0x70)
+ * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
+ * Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
+ * of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
+ * - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
+ * by the difference in the exponent bias (see above).
+ * - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
+ * exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
+ * The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
+ * partially IEEE754-compliant implementations.
+ *
+ * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
+ * operate on denormal inputs, and do not produce denormal results.
+ */
+ const uint32_t exp_offset = UINT32_C(0xE0) << 23;
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float exp_scale = 0x1.0p-112f;
+#else
+ const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
+#endif
+ const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
+
+ /*
+ * Convert denormalized half-precision inputs into single-precision results (always normalized).
+ * Zero inputs are also handled here.
+ *
+ * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
+ * First, we shift mantissa into bits 0-9 of the 32-bit word.
+ *
+ * zeros | mantissa
+ * +---------------------------+------------+
+ * |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
+ * +---------------------------+------------+
+ * Bits 10-31 0-9
+ *
+ * Now, remember that denormalized half-precision numbers are represented as:
+ * FP16 = mantissa * 2**(-24).
+ * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
+ * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
+ * A normalized single-precision floating-point number is represented as:
+ * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
+ * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
+ * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
+ *
+ * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
+ * is zero, the constructed single-precision number has the value of
+ * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
+ * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
+ * the input half-precision number.
+ */
+ const uint32_t magic_mask = UINT32_C(126) << 23;
+ const float magic_bias = 0.5f;
+ const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
+
+ /*
+ * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
+ * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
+ * input is either a denormal number, or zero.
+ * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
+ */
+ const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
+ const uint32_t result = sign |
+ (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
+ return fp32_from_bits(result);
+}
+
+/*
+ * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
+ * IEEE half-precision format, in bit representation.
+ *
+ * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
+ * floating-point operations and bitcasts between integer and floating-point variables.
+ */
+static inline uint16_t fp16_ieee_from_fp32_value(float f) {
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
+ const float scale_to_inf = 0x1.0p+112f;
+ const float scale_to_zero = 0x1.0p-110f;
+#else
+ const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
+ const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
+#endif
+ float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
+
+ const uint32_t w = fp32_to_bits(f);
+ const uint32_t shl1_w = w + w;
+ const uint32_t sign = w & UINT32_C(0x80000000);
+ uint32_t bias = shl1_w & UINT32_C(0xFF000000);
+ if (bias < UINT32_C(0x71000000)) {
+ bias = UINT32_C(0x71000000);
+ }
+
+ base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
+ const uint32_t bits = fp32_to_bits(base);
+ const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
+ const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
+ const uint32_t nonsign = exp_bits + mantissa_bits;
+ return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
+}
+
+void mul_mat_vec_f16_0(
+ const uint16_t * src0,
+ const uint16_t * src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols8 = ncols & ~7;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum = _mm256_setzero_ps();
+
+ const uint16_t * src0_row = src0 + i * ncols;
+ for (int j = 0; j < ncols8; j += 8) {
+ __m256 a = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j)));
+ __m256 b = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
+ sum = _mm256_fmadd_ps(a, b, sum);
+ }
+ dst[i] = reduce_vector8_0(sum);
+
+ for (int j = ncols8; j < ncols; j++) {
+ dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
+ }
+ }
+}
+
+void mul_mat_vec_f16_1(
+ const uint16_t * src0,
+ const uint16_t * src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols16 = ncols & ~15;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+
+ const uint16_t * src0_row = src0 + i * ncols;
+ for (int j = 0; j < ncols16; j += 16) {
+ __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
+ __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
+ __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
+ __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
+ sum0 = _mm256_fmadd_ps(a0, b0, sum0);
+ sum1 = _mm256_fmadd_ps(a1, b1, sum1);
+ }
+ dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1);
+
+ for (int j = ncols16; j < ncols; j++) {
+ dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
+ }
+ }
+}
+
+void mul_mat_vec_f16_2(
+ const uint16_t * src0,
+ const uint16_t * src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols32 = ncols & ~31;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+ __m256 sum2 = _mm256_setzero_ps();
+ __m256 sum3 = _mm256_setzero_ps();
+
+ const uint16_t * src0_row = src0 + i * ncols;
+ for (int j = 0; j < ncols32; j += 32) {
+ __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
+ __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
+ __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
+ __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
+ __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
+ __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
+ __m256 b2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 16)));
+ __m256 b3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 24)));
+ sum0 = _mm256_fmadd_ps(a0, b0, sum0);
+ sum1 = _mm256_fmadd_ps(a1, b1, sum1);
+ sum2 = _mm256_fmadd_ps(a2, b2, sum2);
+ sum3 = _mm256_fmadd_ps(a3, b3, sum3);
+ }
+ dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
+
+ for (int j = ncols32; j < ncols; j++) {
+ dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
+ }
+ }
+}
+
+void mul_mat_vec_f16_3(
+ const uint16_t * src0,
+ const float * src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int ncols32 = ncols & ~31;
+
+ for (int i = 0; i < nrows; i++) {
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+ __m256 sum2 = _mm256_setzero_ps();
+ __m256 sum3 = _mm256_setzero_ps();
+
+ const uint16_t * src0_row = src0 + i * ncols;
+ for (int j = 0; j < ncols32; j += 32) {
+ __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
+ __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
+ __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
+ __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
+ __m256 b0 = _mm256_loadu_ps(src1 + j);
+ __m256 b1 = _mm256_loadu_ps(src1 + j + 8);
+ __m256 b2 = _mm256_loadu_ps(src1 + j + 16);
+ __m256 b3 = _mm256_loadu_ps(src1 + j + 24);
+ sum0 = _mm256_fmadd_ps(a0, b0, sum0);
+ sum1 = _mm256_fmadd_ps(a1, b1, sum1);
+ sum2 = _mm256_fmadd_ps(a2, b2, sum2);
+ sum3 = _mm256_fmadd_ps(a3, b3, sum3);
+ }
+ dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
+
+ for (int j = ncols32; j < ncols; j++) {
+ dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
+ }
+ }
+}
+
+uint64_t get_time_us() {
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ return tv.tv_sec * 1000000 + tv.tv_usec;
+}
+
+int main(int argc, const char ** argv) {
+ float * src0 = (float *)malloc(sizeof(float)*N*M);
+ float * src1 = (float *)malloc(sizeof(float)*M);
+ float * dst = (float *)malloc(sizeof(float)*N);
+
+ //float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
+ //float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
+ //float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
+
+ for (int i = 0; i < N*M; i++) {
+ src0[i] = rand() / (float)RAND_MAX;
+ }
+
+ for (int i = 0; i < M; i++) {
+ src1[i] = rand() / (float)RAND_MAX;
+ }
+
+ // convert src0 and src1 to __fp16
+ uint16_t * src0_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*N*M));
+ uint16_t * src1_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*M));
+ //uint16_t * src0_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*N*M));
+ //uint16_t * src1_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*M));
+
+ {
+ const uint64_t t_start = get_time_us();
+
+ for (int i = 0; i < N*M; i++) {
+ src0_fp16[i] = fp16_ieee_from_fp32_value(src0[i]);
+ //printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
+ //assert(!isnan(fp16_ieee_to_fp32_value(src0_fp16[i])));
+ }
+
+ for (int i = 0; i < M; i++) {
+ src1_fp16[i] = fp16_ieee_from_fp32_value(src1[i]);
+ }
+
+ const uint64_t t_end = get_time_us();
+ printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
+ }
+
+ for (int i = 0; i < 16; ++i) {
+ printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
+ }
+
+ int method = 0;
+ if (argc > 1) {
+ method = atoi(argv[1]);
+ }
+
+ const int nIter = 1000;
+
+ const clock_t start = clock();
+ const uint64_t start_us = get_time_us();
+
+ double iM = 1.0/M;
+ double sum = 0.0f;
+ for (int i = 0; i < nIter; i++) {
+ if (method == 0) {
+ mul_mat_vec_f32_0(src0, src1, dst, N, M);
+ }
+
+ if (method == 1) {
+ mul_mat_vec_f32_1(src0, src1, dst, N, M);
+ }
+
+ if (method == 2) {
+ mul_mat_vec_f32_2(src0, src1, dst, N, M);
+ }
+
+ if (method == 3) {
+ mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
+ }
+
+ if (method == 4) {
+ mul_mat_vec_f16_1(src0_fp16, src1_fp16, dst, N, M);
+ }
+
+ if (method == 5) {
+ mul_mat_vec_f16_2(src0_fp16, src1_fp16, dst, N, M);
+ }
+
+ if (method == 6) {
+ mul_mat_vec_f16_3(src0_fp16, src1, dst, N, M);
+ }
+ }
+
+ for (int i = 0; i < N; i++) {
+ sum += dst[i]*iM;
+ }
+
+ {
+ const clock_t end = clock();
+ const uint64_t end_us = get_time_us();
+ printf("%s: elapsed ticks: %ld\n", __func__, end - start);
+ printf("%s: elapsed us: %ld\n", __func__, end_us - start_us);
+ }
+
+ printf("%f\n", sum);
+
+ free(src0);
+ free(src1);
+ free(dst);
+
+ free(src0_fp16);
+ free(src1_fp16);
+
+ return 0;
+}
--- /dev/null
+#include <stdint.h>
+#include <stdio.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <time.h>
+#include <math.h>
+
+#include <sys/time.h>
+
+#include <arm_neon.h>
+
+const int N = 1 << 14;
+const int M = 768;
+
+//
+// naive implementation
+//
+
+void mul_mat_vec_f32_0(
+ const float * restrict src0,
+ const float * restrict src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+ for (int i = 0; i < nrows; i++) {
+ float sum = 0.0f;
+ for (int j = 0; j < ncols; j++) {
+ sum += src0[i*ncols + j]*src1[j];
+ }
+ dst[i] = sum;
+ }
+}
+
+void mul_mat_vec_f16_0(
+ const __fp16 * src0,
+ const __fp16 * src1,
+ float * dst,
+ int nrows,
+ int ncols) {
+
+ const int n64 = ncols & ~63;
+
+ for (int r = 0; r < nrows; r++) {
+ float sumf = 0.0;
+
+ float16x8_t sum0 = vdupq_n_f16(0.0f);
+ float16x8_t sum1 = vdupq_n_f16(0.0f);
+ float16x8_t sum2 = vdupq_n_f16(0.0f);
+ float16x8_t sum3 = vdupq_n_f16(0.0f);
+ float16x8_t sum4 = vdupq_n_f16(0.0f);
+ float16x8_t sum5 = vdupq_n_f16(0.0f);
+ float16x8_t sum6 = vdupq_n_f16(0.0f);
+ float16x8_t sum7 = vdupq_n_f16(0.0f);
+
+ float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
+ float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+
+ const __fp16 * restrict p0 = src0 + r*ncols;
+
+ for (int i = 0; i < n64; i += 64) {
+ x0 = vld1q_f16(p0 + i + 0 );
+ x1 = vld1q_f16(p0 + i + 8 );
+ x2 = vld1q_f16(p0 + i + 16);
+ x3 = vld1q_f16(p0 + i + 24);
+ x4 = vld1q_f16(p0 + i + 32);
+ x5 = vld1q_f16(p0 + i + 40);
+ x6 = vld1q_f16(p0 + i + 48);
+ x7 = vld1q_f16(p0 + i + 56);
+
+ y0 = vld1q_f16(src1 + i + 0 );
+ y1 = vld1q_f16(src1 + i + 8 );
+ y2 = vld1q_f16(src1 + i + 16);
+ y3 = vld1q_f16(src1 + i + 24);
+ y4 = vld1q_f16(src1 + i + 32);
+ y5 = vld1q_f16(src1 + i + 40);
+ y6 = vld1q_f16(src1 + i + 48);
+ y7 = vld1q_f16(src1 + i + 56);
+
+ sum0 = vfmaq_f16(sum0, x0, y0);
+ sum1 = vfmaq_f16(sum1, x1, y1);
+ sum2 = vfmaq_f16(sum2, x2, y2);
+ sum3 = vfmaq_f16(sum3, x3, y3);
+ sum4 = vfmaq_f16(sum4, x4, y4);
+ sum5 = vfmaq_f16(sum5, x5, y5);
+ sum6 = vfmaq_f16(sum6, x6, y6);
+ sum7 = vfmaq_f16(sum7, x7, y7);
+ }
+
+ // TODO: F16 - better way to reduce this ?
+ float16x8_t sum = vaddq_f16(sum0, sum1);
+
+ sum = vaddq_f16(sum, sum2);
+ sum = vaddq_f16(sum, sum3);
+ sum = vaddq_f16(sum, sum4);
+ sum = vaddq_f16(sum, sum5);
+ sum = vaddq_f16(sum, sum6);
+ sum = vaddq_f16(sum, sum7);
+
+ sumf += sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
+
+ for (int j = n64; j < n64; j++) {
+ sumf += src0[r*ncols + j]*src1[j];
+ }
+
+ dst[r] = sumf;
+ }
+}
+
+uint64_t get_time_us() {
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ return tv.tv_sec * 1000000 + tv.tv_usec;
+}
+
+int main(int argc, const char ** argv) {
+ float * src0 = (float *)malloc(sizeof(float)*N*M);
+ float * src1 = (float *)malloc(sizeof(float)*M);
+ float * dst = (float *)malloc(sizeof(float)*N);
+
+ //float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
+ //float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
+ //float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
+
+ for (int i = 0; i < N*M; i++) {
+ src0[i] = rand() / (float)RAND_MAX;
+ }
+
+ for (int i = 0; i < M; i++) {
+ src1[i] = rand() / (float)RAND_MAX;
+ }
+
+ // convert src0 and src1 to __fp16
+ __fp16 * src0_fp16 = (__fp16 *)(malloc(sizeof(__fp16)*N*M));
+ __fp16 * src1_fp16 = (__fp16 *)(malloc(sizeof(__fp16)*M));
+
+ {
+ const uint64_t t_start = get_time_us();
+
+ for (int i = 0; i < N*M; i++) {
+ src0_fp16[i] = src0[i];
+ //printf("%f %f\n", src0[i], src0_fp16[i]);
+ //assert(!isnan(src0_fp16[i]));
+ }
+
+ for (int i = 0; i < M; i++) {
+ src1_fp16[i] = src1[i];
+ }
+
+ const uint64_t t_end = get_time_us();
+ printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
+ }
+
+ for (int i = 0; i < 16; ++i) {
+ printf("%f %f\n", src0[i], src0_fp16[i]);
+ }
+
+ int method = 0;
+ if (argc > 1) {
+ method = atoi(argv[1]);
+ }
+
+ const int nIter = 1000;
+
+ const clock_t start = clock();
+ const uint64_t start_us = get_time_us();
+
+ double iM = 1.0/M;
+ double sum = 0.0f;
+ for (int i = 0; i < nIter; i++) {
+ if (method == 0) {
+ mul_mat_vec_f32_0(src0, src1, dst, N, M);
+ }
+
+ if (method == 1) {
+ mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
+ }
+ }
+
+ for (int i = 0; i < N; i++) {
+ sum += dst[i]*iM;
+ }
+
+ {
+ const clock_t end = clock();
+ const uint64_t end_us = get_time_us();
+ printf("%s: elapsed ticks: %ld\n", __func__, end - start);
+ printf("%s: elapsed us: %llu\n", __func__, end_us - start_us);
+ }
+
+ printf("%f\n", sum);
+
+ free(src0);
+ free(src1);
+ free(dst);
+
+ free(src0_fp16);
+ free(src1_fp16);
+
+ return 0;
+}
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 128*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * t1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 10);
+ struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx0, GGML_TYPE_I16, 10, 20);
+ struct ggml_tensor * t3 = ggml_new_tensor_3d(ctx0, GGML_TYPE_I32, 10, 20, 30);
+
+ assert(t1->n_dims == 1);
+ assert(t1->ne[0] == 10);
+ assert(t1->nb[1] == 10*sizeof(float));
+
+ assert(t2->n_dims == 2);
+ assert(t2->ne[0] == 10);
+ assert(t2->ne[1] == 20);
+ assert(t2->nb[1] == 10*sizeof(int16_t));
+ assert(t2->nb[2] == 10*20*sizeof(int16_t));
+
+ assert(t3->n_dims == 3);
+ assert(t3->ne[0] == 10);
+ assert(t3->ne[1] == 20);
+ assert(t3->ne[2] == 30);
+ assert(t3->nb[1] == 10*sizeof(int32_t));
+ assert(t3->nb[2] == 10*20*sizeof(int32_t));
+ assert(t3->nb[3] == 10*20*30*sizeof(int32_t));
+
+ ggml_print_objects(ctx0);
+
+ ggml_free(ctx0);
+
+ return 0;
+}
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 128*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ {
+ struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+
+ ggml_set_param(ctx0, x);
+
+ struct ggml_tensor * a = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * b = ggml_mul(ctx0, x, x);
+ struct ggml_tensor * f = ggml_mul(ctx0, b, a);
+
+ // a*x^2
+ // 2*a*x
+
+ ggml_print_objects(ctx0);
+
+ struct ggml_cgraph gf = ggml_build_forward(f);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x, 2.0f);
+ ggml_set_f32(a, 3.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(f->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("f = %f\n", ggml_get_f32_1d(f, 0));
+ printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0));
+
+ assert(ggml_get_f32_1d(f, 0) == 12.0f);
+ assert(ggml_get_f32_1d(x->grad, 0) == 12.0f);
+
+ ggml_set_f32(x, 3.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(f->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("f = %f\n", ggml_get_f32_1d(f, 0));
+ printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0));
+
+ assert(ggml_get_f32_1d(f, 0) == 27.0f);
+ assert(ggml_get_f32_1d(x->grad, 0) == 18.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-1-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-1-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 1.0f);
+ ggml_set_f32(x3, 0.0f);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y = ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2));
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
+ printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
+
+ assert(ggml_get_f32_1d(y, 0) == 12.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 7.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
+
+ struct ggml_tensor * g1 = x1->grad;
+ struct ggml_tensor * g2 = x2->grad;
+
+ struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true);
+
+ ggml_graph_reset(&gb);
+ ggml_set_f32(g1->grad, 1.0f);
+ ggml_set_f32(g2->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gbb);
+
+ printf("H * [1, 1] = [ %f %f ]\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x2->grad, 0));
+
+ assert(ggml_get_f32_1d(x1->grad, 0) == 3.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-2-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-2-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y = ggml_mul(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2)), x1);
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 4.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
+ printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
+
+ assert(ggml_get_f32_1d(y, 0) == 63.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 51.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 9.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-3-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-3-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+ ggml_set_param(ctx0, x3);
+
+ struct ggml_tensor * y = ggml_mul(ctx0, ggml_mul(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x2, x2)), x3);
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 1.0f);
+ ggml_set_f32(x2, 2.0f);
+ ggml_set_f32(x3, 3.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
+ printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
+ printf("df/dx3 = %f\n", ggml_get_f32_1d(x3->grad, 0));
+
+ assert(ggml_get_f32_1d(y, 0) == 12.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 24.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 12.0f);
+ assert(ggml_get_f32_1d(x3->grad, 0) == 4.0f);
+
+ struct ggml_tensor * g1 = x1->grad;
+ struct ggml_tensor * g2 = x2->grad;
+ struct ggml_tensor * g3 = x3->grad;
+
+ struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true);
+
+ ggml_graph_reset(&gb);
+ ggml_set_f32(g1->grad, 1.0f);
+ ggml_set_f32(g2->grad, 1.0f);
+ ggml_set_f32(g3->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gbb);
+
+ printf("H * [1, 1, 1] = [ %f %f %f ]\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x3->grad, 0));
+
+ assert(ggml_get_f32_1d(x1->grad, 0) == 56.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 34.0f);
+ assert(ggml_get_f32_1d(x3->grad, 0) == 12.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-4-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-4-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y = ggml_sum(ctx0, ggml_mul(ctx0, x1, x2));
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 5.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f %f %f\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x1->grad, 1),
+ ggml_get_f32_1d(x1->grad, 2));
+ printf("df/dx2 = %f %f %f\n",
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x2->grad, 1),
+ ggml_get_f32_1d(x2->grad, 2));
+
+ assert(ggml_get_f32_1d(y, 0) == 45.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 5.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
+ assert(ggml_get_f32_1d(x1->grad, 1) == 5.0f);
+ assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
+ assert(ggml_get_f32_1d(x1->grad, 2) == 5.0f);
+ assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-5-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-5-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y =
+ ggml_sum(ctx0,
+ ggml_add(ctx0,
+ ggml_mul(ctx0, x1, x2),
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1),
+ ggml_mul(ctx0, x1, x1)
+ )
+ )
+ );
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 5.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f %f %f\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x1->grad, 1),
+ ggml_get_f32_1d(x1->grad, 2));
+ printf("df/dx2 = %f %f %f\n",
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x2->grad, 1),
+ ggml_get_f32_1d(x2->grad, 2));
+
+ assert(ggml_get_f32_1d(y, 0) == -9.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == -7.0f);
+ assert(ggml_get_f32_1d(x1->grad, 1) == -7.0f);
+ assert(ggml_get_f32_1d(x1->grad, 2) == -7.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
+ assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
+ assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-6-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-6-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y =
+ ggml_sum(ctx0,
+ ggml_sub(ctx0,
+ ggml_mul(ctx0, x1, x2),
+ ggml_mul(ctx0,
+ ggml_mul(ctx0, x1, x1),
+ ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1)
+ )
+ )
+ );
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 5.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f %f %f\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x1->grad, 1),
+ ggml_get_f32_1d(x1->grad, 2));
+ printf("df/dx2 = %f %f %f\n",
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x2->grad, 1),
+ ggml_get_f32_1d(x2->grad, 2));
+
+ assert(ggml_get_f32_1d(y, 0) == 99.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 17.0f);
+ assert(ggml_get_f32_1d(x1->grad, 1) == 17.0f);
+ assert(ggml_get_f32_1d(x1->grad, 2) == 17.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
+ assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
+ assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-7-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-7-backward.dot");
+ }
+
+ ///////////////////////////////////////////////////////////////
+
+ {
+ struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+ struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
+
+ ggml_set_param(ctx0, x1);
+ ggml_set_param(ctx0, x2);
+
+ struct ggml_tensor * y =
+ ggml_abs(ctx0,
+ ggml_sub(ctx0, x1, x2)
+ );
+
+ struct ggml_cgraph gf = ggml_build_forward(y);
+ struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
+
+ ggml_set_f32(x1, 3.0f);
+ ggml_set_f32(x2, 5.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f %f %f\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x1->grad, 1),
+ ggml_get_f32_1d(x1->grad, 2));
+ printf("df/dx2 = %f %f %f\n",
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x2->grad, 1),
+ ggml_get_f32_1d(x2->grad, 2));
+
+ assert(ggml_get_f32_1d(y, 0) == 2.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == -1.0f);
+ assert(ggml_get_f32_1d(x1->grad, 1) == -1.0f);
+ assert(ggml_get_f32_1d(x1->grad, 2) == -1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 1) == 1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 2) == 1.0f);
+
+ ggml_set_f32(x1, 7.0f);
+ ggml_set_f32(x2, 5.0f);
+
+ ggml_graph_reset(&gf);
+ ggml_set_f32(y->grad, 1.0f);
+
+ ggml_graph_compute(ctx0, &gb);
+
+ printf("y = %f\n", ggml_get_f32_1d(y, 0));
+ printf("df/dx1 = %f %f %f\n",
+ ggml_get_f32_1d(x1->grad, 0),
+ ggml_get_f32_1d(x1->grad, 1),
+ ggml_get_f32_1d(x1->grad, 2));
+ printf("df/dx2 = %f %f %f\n",
+ ggml_get_f32_1d(x2->grad, 0),
+ ggml_get_f32_1d(x2->grad, 1),
+ ggml_get_f32_1d(x2->grad, 2));
+
+ assert(ggml_get_f32_1d(y, 0) == 2.0f);
+ assert(ggml_get_f32_1d(x1->grad, 0) == 1.0f);
+ assert(ggml_get_f32_1d(x1->grad, 1) == 1.0f);
+ assert(ggml_get_f32_1d(x1->grad, 2) == 1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 0) == -1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 1) == -1.0f);
+ assert(ggml_get_f32_1d(x2->grad, 2) == -1.0f);
+
+ ggml_graph_dump_dot(&gf, NULL, "test1-8-forward.dot");
+ ggml_graph_dump_dot(&gb, &gf, "test1-8-backward.dot");
+ }
+
+ ggml_free(ctx0);
+
+ return 0;
+}
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+bool is_close(float a, float b, float epsilon) {
+ return fabs(a - b) < epsilon;
+}
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 128*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ //struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_LBFGS);
+
+ struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
+ opt_params.adam.alpha = 0.01f;
+
+ opt_params.n_threads = (argc > 1) ? atoi(argv[1]) : 8;
+
+ const float xi[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f , 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, };
+ float yi[] = { 15.0f, 25.0f, 35.0f, 45.0f, 55.0f, 65.0f, 75.0f, 85.0f, 95.0f, 105.0f, };
+
+ const int n = sizeof(xi)/sizeof(xi[0]);
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n);
+ struct ggml_tensor * y = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n);
+
+ for (int i = 0; i < n; i++) {
+ ((float *) x->data)[i] = xi[i];
+ ((float *) y->data)[i] = yi[i];
+ }
+
+ {
+ struct ggml_tensor * t0 = ggml_new_f32(ctx0, 0.0f);
+ struct ggml_tensor * t1 = ggml_new_f32(ctx0, 0.0f);
+
+ // initialize auto-diff parameters:
+ ggml_set_param(ctx0, t0);
+ ggml_set_param(ctx0, t1);
+
+ // f = sum_i[(t0 + t1*x_i - y_i)^2]/(2n)
+ struct ggml_tensor * f =
+ ggml_div(ctx0,
+ ggml_sum(ctx0,
+ ggml_sqr(ctx0,
+ ggml_sub(ctx0,
+ ggml_add(ctx0,
+ ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)),
+ ggml_repeat(ctx0, t0, x)),
+ y)
+ )
+ ),
+ ggml_new_f32(ctx0, 2.0f*n));
+
+ enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
+
+ assert(res == GGML_OPT_OK);
+
+ printf("t0 = %f\n", ggml_get_f32_1d(t0, 0));
+ printf("t1 = %f\n", ggml_get_f32_1d(t1, 0));
+
+ assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-3f));
+ }
+
+ {
+ struct ggml_tensor * t0 = ggml_new_f32(ctx0, -1.0f);
+ struct ggml_tensor * t1 = ggml_new_f32(ctx0, 9.0f);
+
+ ggml_set_param(ctx0, t0);
+ ggml_set_param(ctx0, t1);
+
+ // f = 0.5*sum_i[abs(t0 + t1*x_i - y_i)]/n
+ struct ggml_tensor * f =
+ ggml_mul(ctx0,
+ ggml_new_f32(ctx0, 1.0/(2*n)),
+ ggml_sum(ctx0,
+ ggml_abs(ctx0,
+ ggml_sub(ctx0,
+ ggml_add(ctx0,
+ ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)),
+ ggml_repeat(ctx0, t0, x)),
+ y)
+ )
+ )
+ );
+
+
+ enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
+
+ assert(res == GGML_OPT_OK);
+ assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-3f));
+ }
+
+ {
+ struct ggml_tensor * t0 = ggml_new_f32(ctx0, 5.0f);
+ struct ggml_tensor * t1 = ggml_new_f32(ctx0, -4.0f);
+
+ ggml_set_param(ctx0, t0);
+ ggml_set_param(ctx0, t1);
+
+ // f = t0^2 + t1^2
+ struct ggml_tensor * f =
+ ggml_add(ctx0,
+ ggml_sqr(ctx0, t0),
+ ggml_sqr(ctx0, t1)
+ );
+
+ enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
+
+ assert(res == GGML_OPT_OK);
+ assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t0, 0), 0.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t1, 0), 0.0f, 1e-3f));
+ }
+
+ /////////////////////////////////////////
+
+ {
+ struct ggml_tensor * t0 = ggml_new_f32(ctx0, -7.0f);
+ struct ggml_tensor * t1 = ggml_new_f32(ctx0, 8.0f);
+
+ ggml_set_param(ctx0, t0);
+ ggml_set_param(ctx0, t1);
+
+ // f = (t0 + 2*t1 - 7)^2 + (2*t0 + t1 - 5)^2
+ struct ggml_tensor * f =
+ ggml_add(ctx0,
+ ggml_sqr(ctx0,
+ ggml_sub(ctx0,
+ ggml_add(ctx0,
+ t0,
+ ggml_mul(ctx0, t1, ggml_new_f32(ctx0, 2.0f))),
+ ggml_new_f32(ctx0, 7.0f)
+ )
+ ),
+ ggml_sqr(ctx0,
+ ggml_sub(ctx0,
+ ggml_add(ctx0,
+ ggml_mul(ctx0, t0, ggml_new_f32(ctx0, 2.0f)),
+ t1),
+ ggml_new_f32(ctx0, 5.0f)
+ )
+ )
+ );
+
+ enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
+
+ assert(res == GGML_OPT_OK);
+ assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t0, 0), 1.0f, 1e-3f));
+ assert(is_close(ggml_get_f32_1d(t1, 0), 3.0f, 1e-3f));
+ }
+
+ ggml_free(ctx0);
+
+ return 0;
+}
--- /dev/null
+#include "ggml/ggml.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
+
+bool is_close(float a, float b, float epsilon) {
+ return fabs(a - b) < epsilon;
+}
+
+int main(int argc, const char ** argv) {
+ struct ggml_init_params params = {
+ .mem_size = 1024*1024*1024,
+ .mem_buffer = NULL,
+ };
+
+ struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_LBFGS);
+ //struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
+
+ opt_params.n_threads = (argc > 1) ? atoi(argv[1]) : 8;
+
+ const int NP = 1 << 12;
+ const int NF = 1 << 8;
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * F = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, NF, NP);
+ struct ggml_tensor * l = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, NP);
+
+ // regularization weight
+ struct ggml_tensor * lambda = ggml_new_f32(ctx0, 1e-5f);
+
+ srand(0);
+
+ for (int j = 0; j < NP; j++) {
+ const float ll = j < NP/2 ? 1.0f : -1.0f;
+ ((float *)l->data)[j] = ll;
+
+ for (int i = 0; i < NF; i++) {
+ ((float *)F->data)[j*NF + i] = ((ll > 0 && i < NF/2 ? 1.0f : ll < 0 && i >= NF/2 ? 1.0f : 0.0f) + ((float)rand()/(float)RAND_MAX - 0.5f)*0.1f)/(0.5f*NF);
+ }
+ }
+
+ {
+ // initial guess
+ struct ggml_tensor * x = ggml_set_f32(ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, NF), 0.0f);
+
+ ggml_set_param(ctx0, x);
+
+ // f = sum[(fj*x - l)^2]/n + lambda*|x^2|
+ struct ggml_tensor * f =
+ ggml_add(ctx0,
+ ggml_div(ctx0,
+ ggml_sum(ctx0,
+ ggml_sqr(ctx0,
+ ggml_sub(ctx0,
+ ggml_mul_mat(ctx0, F, x),
+ l)
+ )
+ ),
+ ggml_new_f32(ctx0, NP)
+ ),
+ ggml_mul(ctx0,
+ ggml_sum(ctx0, ggml_sqr(ctx0, x)),
+ lambda)
+ );
+
+ enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
+
+ assert(res == GGML_OPT_OK);
+
+ // print results
+ for (int i = 0; i < 16; i++) {
+ printf("x[%3d] = %g\n", i, ((float *)x->data)[i]);
+ }
+ printf("...\n");
+ for (int i = NF - 16; i < NF; i++) {
+ printf("x[%3d] = %g\n", i, ((float *)x->data)[i]);
+ }
+ printf("\n");
+
+ for (int i = 0; i < NF; ++i) {
+ if (i < NF/2) {
+ assert(is_close(((float *)x->data)[i], 1.0f, 1e-2f));
+ } else {
+ assert(is_close(((float *)x->data)[i], -1.0f, 1e-2f));
+ }
+ }
+ }
+
+ ggml_free(ctx0);
+
+ return 0;
+}