}
}
- // GroupedMatmulV2 required tensor_list.size < 128
size_t GROUP_SIZE = 128;
- std::vector<std::vector<aclTensor*>> src0_tensor_vec_vec;
- std::vector<std::vector<aclTensor*>> src1_tensor_vec_vec;
- std::vector<std::vector<aclTensor*>> dst_tensor_vec_vec;
-
- // split and call GroupedMatmulV2
+ // GroupedMatmulV2 required tensor_list.size < 128
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
+ // split and call GroupedMatmulV2
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
return;
}
+/**
+ * @brief Performs expert-specific matrix multiplication (MoE) with
+ * quantized precision using the CANN backend.
+ *
+ * This function executes a matrix multiplication operation tailored for
+ * Mixture of Experts (MoE) models, where the input tensor is multiplied
+ * with expert-specific quantized weight matrices. It leverages the CANN
+ * backend to perform efficient low-precision computations and stores the
+ * quantized result in the destination tensor `dst`.
+ *
+ * Quantization techniques reduce memory footprint and improve performance
+ * by using lower-bit representations (e.g., int8) instead of floating-point.
+ * This function is designed to work with such formats and may incorporate
+ * optimizations like identity-based fast paths or routing masks for sparse
+ * expert selection.
+ *
+ * @param ctx The context for executing CANN backend operations.
+ * @param dst The destination tensor where the quantized MoE multiplication result
+ * will be stored.
+ *
+ * @note This function assumes quantized data types and is designed for
+ * MoE architectures with potential sparse expert routing.
+ */
+static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ // TODO: Use aclnnGroupedMatMul
+ //dst [M, K, N, 1]
+ ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
+ ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
+ ggml_tensor * ids = dst->src[2]; //ids [K, N]
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ // copy index from npu to cpu
+ int64_t n_as = ne02; // A
+ int64_t n_ids = ids->ne[0]; // K
+
+ std::vector<char> ids_host(ggml_nbytes(ids));
+ ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
+ ACL_MEMCPY_DEVICE_TO_HOST);
+ ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
+
+ char * src0_original = (char *) src0->data;
+ char * src1_original = (char *) src1->data;
+ char * dst_original = (char *) dst->data;
+
+ ggml_tensor src0_row = *src0;
+ ggml_tensor src1_row = *src1;
+ ggml_tensor dst_row = *dst;
+
+ const enum ggml_type type = dst->src[0]->type;
+ float weight_elem_size;
+ if (type == GGML_TYPE_Q4_0) {
+ weight_elem_size = float(sizeof(uint8_t)) / 2;
+ } else if (type == GGML_TYPE_Q8_0) {
+ weight_elem_size = float(sizeof(uint8_t));
+ } else {
+ GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
+ }
+
+ // src0_row [D, M, 1, 1] weight without permute
+ src0_row.ne[2] = 1;
+ src0_row.ne[3] = 1;
+ src0_row.nb[0] = weight_elem_size;
+ src0_row.nb[1] = weight_elem_size * ne00;
+ src0_row.nb[2] = weight_elem_size * ne00;
+ src0_row.nb[3] = weight_elem_size * ne00;
+ size_t weight_stride = ne00 * ne01 * weight_elem_size;
+ size_t weight_size = weight_stride * ne02 * ne03;
+
+ // scale [D, M, 1, 1] -> scale && permute
+ size_t scale_elem_size = sizeof(uint16_t);
+ size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
+
+ // src1_row [D, 1, 1, 1] -> input
+ src1_row.ne[1] = 1;
+ src1_row.ne[2] = 1;
+ src1_row.ne[3] = 1;
+ src1_row.nb[2] = nb11;
+ src1_row.nb[3] = nb11;
+
+ // dst_row [M, 1, 1, 1] -> out
+ dst_row.ne[1] = 1;
+ dst_row.ne[2] = 1;
+ dst_row.ne[3] = 1;
+ dst_row.nb[2] = nb1;
+ dst_row.nb[3] = nb1;
+
+ //create weight for one row
+ ggml_cann_pool_alloc weight_allocator(ctx.pool());
+ void* weight_buffer = weight_allocator.alloc(nb02);
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
+ for (int64_t id = 0; id < n_ids; id++) {
+ // expert index
+ int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
+ GGML_ASSERT(i02 >= 0 && i02 < n_as);
+
+ // If B = 1 (broadcast), always use 0; otherwise, use id.
+ int64_t i11 = (ne11 == 1 ? 0 : id);
+ int64_t i12 = iid1;
+
+ int64_t i1 = id;
+ int64_t i2 = i12;
+
+ void* src0_tmp_ptr = src0_original + i02*weight_stride;
+ void* scale_tmp_ptr = src0_original + weight_size + i02*scale_stride;
+ void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
+ void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
+
+ // mem cpy
+ ggml_cann_async_memcpy(ctx, weight_buffer, src0_tmp_ptr, weight_stride,
+ ACL_MEMCPY_DEVICE_TO_DEVICE);
+ void* scale_buffer = (char*)weight_buffer + weight_stride;
+ ggml_cann_async_memcpy(ctx, scale_buffer, scale_tmp_ptr, scale_stride,
+ ACL_MEMCPY_DEVICE_TO_DEVICE);
+
+ src0_row.data = weight_buffer;
+ src1_row.data = src1_tmp_ptr;
+ dst_row.data = dst_tmp_ptr;
+ dst_row.src[0] = &src0_row;
+ dst_row.src[1] = &src1_row;
+
+ ggml_cann_mul_mat(ctx, &dst_row);
+ }
+ }
+ return;
+}
+
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const enum ggml_type type = dst->src[0]->type;
switch (type) {
case GGML_TYPE_F16:
ggml_cann_mul_mat_id_fp(ctx, dst);
break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q8_0:
+ ggml_cann_mul_mat_id_quant(ctx, dst);
+ break;
default:
GGML_ABORT("Unsupported type for mul_mat_id");
break;