GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
+ // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
+ // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
+ GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
+
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
size_t nb23 = V->nb[3];
if (need_f16_K && K->type != GGML_TYPE_F16) {
+ GGML_ASSERT(ggml_is_contiguously_allocated(K));
K_f16.alloc(ggml_nelements(K));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
}
if (need_f16_V && V->type != GGML_TYPE_F16) {
+ GGML_ASSERT(ggml_is_contiguously_allocated(V));
V_f16.alloc(ggml_nelements(V));
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
+ GGML_ASSERT(ggml_is_contiguously_allocated(src0));
+ GGML_ASSERT(!src0->view_src);
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
}
ggml_tensor src0_slice = *src0;
- src0_slice.ne[2] = 1;
- src0_slice.nb[3] = src0_slice.nb[2];
- src0_slice.data = (char *) src0->data + i02*nb02;
- GGML_ASSERT(!ggml_cuda_should_use_mmq(src0->type, cc, ne11) || ne00 % MATRIX_ROW_PADDING == 0);
+ src0_slice.ne[2] = 1;
+ src0_slice.nb[3] = src0_slice.nb[2];
+ src0_slice.op = GGML_OP_VIEW;
+ src0_slice.view_src = dst->src[0]; // non-const pointer to src0
+ src0_slice.data = (char *) src0->data + i02*nb02;
ggml_tensor src1_slice;
memset(&src1_slice, 0, sizeof(src1_slice));
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
- GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguously_allocated(src0));
+ GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
- GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguously_allocated(src0));
+ GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
return ggml_is_contiguous_n(tensor, 2);
}
+bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
+ return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
+}
+
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");