+#include "llama_util.h"
#include "llama.h"
+#include "llama_internal.h"
#include "ggml.h"
+#include <array>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
-#include <regex>
#include <cassert>
#include <cstring>
-
-#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
-#define WIN32_LEAN_AND_MEAN
-#include <Windows.h>
-#else
-#include <sys/types.h>
-#include <sys/mman.h>
-#include <unistd.h>
-#include <fcntl.h>
-#endif
-
-#define Min(X, Y) ((Y) > (X) ? (X) : (Y))
-#define Max(X, Y) ((Y) < (X) ? (X) : (Y))
+#include <climits>
+#include <memory>
+#include <algorithm>
+#include <initializer_list>
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
-#define LLAMA_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
-
-
-// determine number of model parts based on the dimension
-static const std::unordered_map<int, int> LLAMA_N_PARTS = {
- { 4096, 1 },
- { 5120, 2 },
- { 6656, 4 },
- { 8192, 8 },
-};
// available llama models
enum e_model {
// default hparams (LLaMA 7B)
struct llama_hparams {
- int32_t n_vocab = 32000;
- int32_t n_ctx = 512; // this is provided as user input?
- int32_t n_embd = 4096;
- int32_t n_mult = 256;
- int32_t n_head = 32;
- int32_t n_layer = 32;
- int32_t n_rot = 64;
- int32_t f16 = 1;
+ uint32_t n_vocab = 32000;
+ uint32_t n_ctx = 512; // this is provided as user input?
+ uint32_t n_embd = 4096;
+ uint32_t n_mult = 256;
+ uint32_t n_head = 32;
+ uint32_t n_layer = 32;
+ uint32_t n_rot = 64;
+ uint32_t f16 = 1;
+
+ bool operator!=(const llama_hparams & other) const {
+ return memcmp(this, &other, sizeof(llama_hparams));
+ }
};
struct llama_layer {
struct ggml_tensor * k;
struct ggml_tensor * v;
- struct ggml_context * ctx;
+ struct ggml_context * ctx = NULL;
- std::vector<uint8_t> buf;
+ llama_buffer buf;
int n; // number of tokens currently in the cache
+
+ ~llama_kv_cache() {
+ if (ctx) {
+ ggml_free(ctx);
+ }
+ }
};
struct llama_model {
std::vector<llama_layer> layers;
// context
- struct ggml_context * ctx;
+ struct ggml_context * ctx = NULL;
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self;
// the model memory buffer
- std::vector<uint8_t> buf;
+ llama_buffer buf;
// model memory mapped file
- void * mm_addr = NULL;
- uint64_t mm_length = 0;
+ std::unique_ptr<llama_mmap> mapping;
- // tensors
- int n_loaded;
- std::unordered_map<std::string, struct ggml_tensor *> tensors;
+ // objects representing data potentially being locked in memory
+ llama_mlock mlock_buf;
+ llama_mlock mlock_mmap;
+
+ // for quantize-stats only
+ std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
+
+ ~llama_model() {
+ if (ctx) {
+ ggml_free(ctx);
+ }
+ }
};
struct llama_vocab {
// memory buffers used to evaluate the model
// TODO: move in llama_state
- std::vector<uint8_t> buf_compute;
- std::vector<uint8_t> buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
+ llama_buffer buf_compute;
+ llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), });
+ last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
}
if (buf_last >= 0) {
- buf_max_size[buf_last] = Max(buf_max_size[buf_last], last_size);
+ buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
}
buf_last = i;
}
};
+template <typename T>
+static T checked_mul(T a, T b) {
+ T ret = a * b;
+ if (a != 0 && ret / a != b) {
+ throw format("overflow multiplying %llu * %llu",
+ (unsigned long long) a, (unsigned long long) b);
+ }
+ return ret;
+}
+
+static size_t checked_div(size_t a, size_t b) {
+ if (b == 0 || a % b != 0) {
+ throw format("error dividing %zu / %zu", a, b);
+ }
+ return a / b;
+}
+
+static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
+ std::string ret = "[" + std::to_string(ne.at(0));
+ for (size_t i = 1; i < ne.size(); i++) {
+ ret += " x " + std::to_string(ne.at(i));
+ }
+ ret += "]";
+ return ret;
+}
+
+static const char * llama_format_type(enum ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_F32: return "f32";
+ case GGML_TYPE_F16: return "f16";
+ case GGML_TYPE_Q4_0: return "q4_0";
+ case GGML_TYPE_Q4_1: return "q4_1";
+ default: LLAMA_ASSERT(false);
+ }
+}
+
+static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
+ size_t size = ggml_type_size(type);
+ for (uint32_t dim : ne) {
+ size = checked_mul<size_t>(size, dim);
+ }
+ return size / ggml_blck_size(type);
+}
+
+struct llama_load_tensor_shard {
+ std::vector<uint32_t> ne;
+ size_t size;
+ enum ggml_type type;
+ size_t file_idx;
+ size_t file_off;
+
+ void calc_size() {
+ size = llama_calc_tensor_size(ne, type);
+ }
+};
+
+enum llama_split_type {
+ SPLIT_NONE,
+ SPLIT_BY_COLUMNS,
+ SPLIT_BY_ROWS
+};
+
+struct llama_load_tensor {
+ std::vector<llama_load_tensor_shard> shards;
+
+ std::string name;
+ enum ggml_type type = GGML_TYPE_F32;
+ llama_split_type split_type = SPLIT_NONE;
+ std::vector<uint32_t> ne;
+ size_t size;
+ struct ggml_tensor * ggml_tensor = NULL;
+ uint8_t * data;
+
+ llama_load_tensor(const std::string & name) : name(name) {}
+
+ void calc_all() {
+ calc_type();
+ calc_split_type();
+ calc_ne();
+ calc_size();
+ }
+
+ void calc_type() {
+ const auto & first_shard = shards.at(0);
+ for (const auto & shard : shards) {
+ if (shard.type != first_shard.type) {
+ throw format("inconsistent tensor shard type in '%s'", name.c_str());
+ }
+ }
+ type = first_shard.type;
+ }
+
+ void calc_split_type() {
+ if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
+ shards.size() == 1) { // only one file?
+ split_type = SPLIT_NONE;
+ } else if (name.find("tok_embeddings.") == 0 ||
+ name.find(".attention.wo.weight") != std::string::npos ||
+ name.find(".feed_forward.w2.weight") != std::string::npos) {
+ split_type = SPLIT_BY_COLUMNS;
+ } else {
+ split_type = SPLIT_BY_ROWS;
+ }
+ }
+
+ void calc_ne() {
+ const auto & first_shard = shards.at(0);
+ for (const auto & shard : shards) {
+ if (shard.ne != first_shard.ne) {
+ throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
+ name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
+ }
+ }
+ ne = first_shard.ne;
+ LLAMA_ASSERT(shards.size() <= UINT32_MAX);
+ uint32_t n_shards = (uint32_t) shards.size();
+ switch (split_type) {
+ case SPLIT_NONE:
+ ne = first_shard.ne;
+ break;
+ case SPLIT_BY_COLUMNS:
+ ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
+ first_shard.ne[1]};
+ break;
+ case SPLIT_BY_ROWS:
+ ne = {first_shard.ne[0],
+ checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
+ break;
+ }
+ }
+
+ void calc_size() {
+ size = llama_calc_tensor_size(ne, type);
+ }
+};
+
+struct llama_load_tensors_map {
+ // tensors is kept in a separate vector to preserve file order
+ std::vector<llama_load_tensor> tensors;
+ std::unordered_map<std::string, size_t> name_to_idx;
+};
+
+enum llama_file_version {
+ LLAMA_FILE_VERSION_GGML,
+ LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
+ LLAMA_FILE_VERSION_GGJT_V1, // added padding
+};
+
+struct llama_file_loader {
+ llama_file file;
+ llama_file_version file_version;
+ llama_hparams hparams;
+ llama_vocab vocab;
+
+ llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
+ : file(fname, "rb") {
+ fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
+ read_magic();
+ read_hparams();
+ read_vocab();
+ read_tensor_metadata(file_idx, tensors_map);
+ }
+ void read_magic() {
+ uint32_t magic = file.read_u32();
+ uint32_t version = 0;
+
+ if (magic != 'ggml') {
+ version = file.read_u32();
+ }
+
+ if (magic == 'ggml' && version == 0) {
+ file_version = LLAMA_FILE_VERSION_GGML;
+ } else if (magic == 'ggmf' && version == 1) {
+ file_version = LLAMA_FILE_VERSION_GGMF_V1;
+ } else if (magic == 'ggjt' && version == 1) {
+ file_version = LLAMA_FILE_VERSION_GGJT_V1;
+ } else {
+ throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
+ magic, version);
+ }
+ }
+ void read_hparams() {
+ hparams.n_vocab = file.read_u32();
+ hparams.n_embd = file.read_u32();
+ hparams.n_mult = file.read_u32();
+ hparams.n_head = file.read_u32();
+ hparams.n_layer = file.read_u32();
+ hparams.n_rot = file.read_u32();
+ hparams.f16 = file.read_u32();
+ }
+ void read_vocab() {
+ vocab.id_to_token.resize(hparams.n_vocab);
+
+ for (uint32_t i = 0; i < hparams.n_vocab; i++) {
+ uint32_t len = file.read_u32();
+ std::string word = file.read_string(len);
+
+ float score = 0.0f;
+ if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
+ file.read_raw(&score, sizeof(score));
+ }
+
+ vocab.token_to_id[word] = i;
+
+ auto & tok_score = vocab.id_to_token[i];
+ tok_score.tok = std::move(word);
+ tok_score.score = score;
+ }
+ }
+ void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
+ while (file.tell() < file.size) {
+ llama_load_tensor_shard shard;
+ uint32_t n_dims = file.read_u32();
+ uint32_t name_len = file.read_u32();
+ uint32_t ftype = file.read_u32();
+ shard.ne.resize(n_dims);
+ file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
+ std::string name = file.read_string(name_len);
+ if (n_dims < 1 || n_dims > 2) {
+ throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
+ }
+ switch (ftype) {
+ case 0: shard.type = GGML_TYPE_F32; break;
+ case 1: shard.type = GGML_TYPE_F16; break;
+ case 2: shard.type = GGML_TYPE_Q4_0; break;
+ case 3: shard.type = GGML_TYPE_Q4_1; break;
+ default: {
+ throw format("unrecognized ftype %u\n", ftype);
+ }
+ }
+
+ if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
+ // skip to the next multiple of 32 bytes
+ file.seek(-file.tell() & 31, SEEK_CUR);
+ }
+ shard.file_idx = file_idx;
+ shard.file_off = file.tell();
+
+ shard.calc_size();
+ file.seek(shard.size, SEEK_CUR);
+
+ auto it = tensors_map.name_to_idx.find(name);
+ size_t idx;
+ if (it != tensors_map.name_to_idx.end()) {
+ idx = it->second;
+ } else {
+ tensors_map.tensors.emplace_back(name);
+ idx = tensors_map.tensors.size() - 1;
+ tensors_map.name_to_idx.emplace(name, idx);
+ }
+ tensors_map.tensors.at(idx).shards.push_back(shard);
+ }
+ }
+};
+
+struct llama_file_saver {
+ llama_file file;
+ llama_file_loader * any_file_loader;
+ llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16)
+ : file(fname, "wb"), any_file_loader(any_file_loader) {
+ fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
+ write_magic();
+ write_hparams(new_f16);
+ write_vocab();
+ }
+ void write_magic() {
+ file.write_u32('ggjt'); // magic
+ file.write_u32(1); // version
+ }
+ void write_hparams(uint32_t new_f16) {
+ const llama_hparams & hparams = any_file_loader->hparams;
+ file.write_u32(hparams.n_vocab);
+ file.write_u32(hparams.n_embd);
+ file.write_u32(hparams.n_mult);
+ file.write_u32(hparams.n_head);
+ file.write_u32(hparams.n_layer);
+ file.write_u32(hparams.n_rot);
+ file.write_u32(new_f16);
+ }
+ void write_vocab() {
+ if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
+ fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
+ }
+ uint32_t n_vocab = any_file_loader->hparams.n_vocab;
+ for (uint32_t i = 0; i < n_vocab; i++) {
+ const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
+ file.write_u32((uint32_t) token_score.tok.size());
+ file.write_raw(token_score.tok.data(), token_score.tok.size());
+ file.write_raw(&token_score.score, sizeof(token_score.score));
+ }
+ }
+ void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
+ uint32_t ftype;
+ switch (new_type) {
+ case GGML_TYPE_F32: ftype = 0; break;
+ case GGML_TYPE_F16: ftype = 1; break;
+ case GGML_TYPE_Q4_0: ftype = 2; break;
+ case GGML_TYPE_Q4_1: ftype = 3; break;
+ default: LLAMA_ASSERT(false);
+ }
+ file.write_u32((uint32_t) tensor.ne.size());
+ file.write_u32((uint32_t) tensor.name.size());
+ file.write_u32(ftype);
+ file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
+ file.write_raw(tensor.name.data(), tensor.name.size());
+ file.seek(-file.tell() & 31, SEEK_CUR);
+ LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
+ file.write_raw(new_data, new_size);
+ }
+};
+
+struct llama_model_loader {
+ std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
+ llama_load_tensors_map tensors_map;
+ bool use_mmap;
+ size_t num_ggml_tensors_created = 0;
+ struct ggml_context * ggml_ctx = NULL;
+ std::unique_ptr<llama_mmap> mapping;
+
+ llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
+ auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
+ file_loaders.emplace_back(first_file);
+ uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
+ for (uint32_t i = 1; i < n_parts; i++) {
+ std::string fname = fname_base + "." + std::to_string(i);
+ auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
+ file_loaders.emplace_back(ith_file);
+ if (ith_file->hparams != first_file->hparams) {
+ throw format("llama.cpp: hparams inconsistent between files");
+ }
+ }
+ if (!llama_mmap::SUPPORTED) {
+ use_mmap = false;
+ }
+ if (use_mmap && alignment_prevents_mmap()) {
+ fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
+ use_mmap = false;
+ }
+ this->use_mmap = use_mmap;
+ for (llama_load_tensor & lt : tensors_map.tensors) {
+ lt.calc_all();
+ }
+ }
+
+ bool alignment_prevents_mmap() {
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ for (const llama_load_tensor_shard & shard : lt.shards) {
+ if (shard.file_off & 3) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ uint32_t guess_n_parts() const {
+ auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
+ if (it == tensors_map.name_to_idx.end()) {
+ throw std::string("missing tok_embeddings.weight");
+ }
+ const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
+ return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
+ }
+
+ void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
+ *ctx_size_p = *mmapped_size_p = 0;
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
+ *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
+ }
+ }
+
+ struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
+ auto it = tensors_map.name_to_idx.find(name);
+ if (it == tensors_map.name_to_idx.end()) {
+ throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
+ }
+ llama_load_tensor & lt = tensors_map.tensors.at(it->second);
+ if (lt.ne != ne) {
+ throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
+ name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
+ }
+ return get_tensor_for(lt);
+ }
+
+ struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
+ struct ggml_tensor * tensor;
+ if (lt.ne.size() == 2) {
+ tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
+ } else {
+ LLAMA_ASSERT(lt.ne.size() == 1);
+ tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
+ }
+ LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
+ lt.ggml_tensor = tensor;
+ num_ggml_tensors_created++;
+ return tensor;
+ }
+
+ void done_getting_tensors() {
+ if (num_ggml_tensors_created != tensors_map.tensors.size()) {
+ throw std::string("llama.cpp: file contained more tensors than expected");
+ }
+ }
+
+ void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
+ size_t data_size = 0;
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ data_size += lt.size;
+ }
+
+ if (use_mmap) {
+ mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
+ if (!lmlock) {
+ // Don't call the callback since the actual loading will be lazy
+ // and we can't measure it.
+ progress_callback = NULL;
+ }
+ if (lmlock) {
+ lmlock->init(mapping->addr);
+ }
+ }
+
+ size_t done_size = 0;
+ for (llama_load_tensor & lt : tensors_map.tensors) {
+ if (progress_callback) {
+ progress_callback((float) done_size / data_size, progress_callback_user_data);
+ }
+ LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
+ lt.data = (uint8_t *) lt.ggml_tensor->data;
+ load_data_for(lt);
+ lt.ggml_tensor->data = lt.data;
+ done_size += lt.size;
+ if (use_mmap && lmlock) {
+ lmlock->grow_to(done_size);
+ }
+ }
+ if (progress_callback) {
+ progress_callback(1.0f, progress_callback_user_data);
+ }
+ }
+
+ void load_data_for(llama_load_tensor & lt) {
+ if (use_mmap) {
+ LLAMA_ASSERT(lt.shards.size() == 1);
+ lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
+ } else if (lt.split_type == SPLIT_NONE) {
+ llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
+ file.seek(lt.shards.at(0).file_off, SEEK_SET);
+ file.read_raw(lt.data, lt.size);
+ } else if (lt.split_type == SPLIT_BY_ROWS) {
+ size_t offset = 0;
+ for (llama_load_tensor_shard & shard : lt.shards) {
+ llama_file & file = file_loaders.at(shard.file_idx)->file;
+ file.seek(shard.file_off, SEEK_SET);
+ file.read_raw(lt.data + offset, shard.size);
+ offset += shard.size;
+ }
+ LLAMA_ASSERT(offset == lt.size);
+ } else if (lt.split_type == SPLIT_BY_COLUMNS) {
+ // Let's load the data into temporary buffers to ensure the OS performs large loads.
+ std::vector<llama_buffer> tmp_bufs;
+ tmp_bufs.resize(lt.shards.size());
+ for (size_t i = 0; i < lt.shards.size(); i++) {
+ llama_load_tensor_shard & shard = lt.shards.at(i);
+ llama_file & file = file_loaders.at(shard.file_idx)->file;
+ file.seek(shard.file_off, SEEK_SET);
+ tmp_bufs.at(i).resize(shard.size);
+ file.read_raw(tmp_bufs.at(i).addr, shard.size);
+ }
+ // Then reshape.
+ size_t num_rows = lt.ne.at(1);
+ size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
+ size_t out_offset = 0;
+ for (size_t row = 0; row < num_rows; row++) {
+ for (llama_buffer & tmp_buf : tmp_bufs) {
+ memcpy(lt.data + out_offset,
+ tmp_buf.addr + row * per_shard_row_size,
+ per_shard_row_size);
+ out_offset += per_shard_row_size;
+ }
+ }
+ LLAMA_ASSERT(out_offset == lt.size);
+ }
+ if (0) {
+ print_checksum(lt);
+ }
+ }
+
+ static void print_checksum(llama_load_tensor & lt) {
+ uint32_t sum = 0;
+ for (size_t i = 0; i < lt.size; i++) {
+ uint8_t byte = lt.data[i];
+ sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
+ }
+ fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
+ llama_format_tensor_shape(lt.ne).c_str(), lt.size);
+ }
+
+};
+
+
//
// kv cache
//
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
struct ggml_init_params params;
- params.mem_size = cache.buf.size();
- params.mem_buffer = cache.buf.data();
+ params.mem_size = cache.buf.size;
+ params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
return true;
}
-static void kv_cache_free(struct llama_kv_cache & cache) {
- if (cache.ctx) {
- ggml_free(cache.ctx);
- cache.ctx = nullptr;
- }
-}
-
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.n_ctx =*/ 512,
/*.f16_kv =*/ false,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
+ /*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
return result;
}
-//
-// model loading
-//
-
-static void *mmap_file(const char *fname, uint64_t *mm_length) {
-#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
- HANDLE hFile = CreateFileA(fname,
- GENERIC_READ,
- FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
- NULL,
- OPEN_EXISTING,
- FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
- NULL);
- if (hFile == INVALID_HANDLE_VALUE) return 0;
- LARGE_INTEGER fileSize;
- fileSize.QuadPart = -1;
- GetFileSizeEx(hFile, &fileSize);
- int64_t length = fileSize.QuadPart;
- HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
- CloseHandle(hFile);
- if (!hMapping) return 0;
- void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
- CloseHandle(hMapping);
- if (!addr) return 0;
-#else
- int fd = open(fname, O_RDONLY);
- if (fd == -1) return 0;
- int64_t length = lseek(fd, 0, SEEK_END);
- void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
- close(fd);
- if (addr == MAP_FAILED) return 0;
-#endif
- *mm_length = length;
- return addr;
+bool llama_mmap_supported() {
+ return llama_mmap::SUPPORTED;
}
-static void munmap_file(void * addr, size_t length) {
-#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
- UnmapViewOfFile(addr);
-#else
- munmap(addr, length);
-#endif
+bool llama_mlock_supported() {
+ return llama_mlock::SUPPORTED;
}
-static bool report_bad_magic(const char *path, uint32_t got, uint32_t want) {
- fprintf(stderr,
- "%s: invalid model file (bad magic [got %#x want %#x])\n"
- "\tyou most likely need to regenerate your ggml files\n"
- "\tthe benefit is you'll get 10-100x faster load times\n"
- "\tsee https://github.com/ggerganov/llama.cpp/issues/91\n"
- "\tuse convert-pth-to-ggml.py to regenerate from original pth\n"
- "\tuse migrate-ggml-2023-03-30-pr613.py if you deleted originals\n",
- path, got, want);
- return false;
-}
+//
+// model loading
+//
-static bool llama_model_load(
+static void llama_model_load_internal(
const std::string & fname,
llama_context & lctx,
int n_ctx,
- int n_parts,
ggml_type memory_type,
+ bool use_mmap,
+ bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
+ void * progress_callback_user_data) {
lctx.t_start_us = ggml_time_us();
- auto & model = lctx.model;
- auto & vocab = lctx.vocab;
+ std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
-
- std::vector<char> f_buf(1024*1024);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
-
- fin.seekg(0, fin.end);
- const size_t file_size = fin.tellg();
- fin.seekg(0);
+ lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
+ auto & model = lctx.model;
+ auto & hparams = model.hparams;
+ hparams = ml->file_loaders.at(0)->hparams;
+ uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- // verify magic
{
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!)\n",
- __func__, fname.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- return report_bad_magic(fname.c_str(), magic, LLAMA_FILE_MAGIC);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 60: model.type = e_model::MODEL_30B; break;
+ case 80: model.type = e_model::MODEL_65B; break;
}
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
-
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
- }
-
- int n_ff = 0;
-
- // load hparams
- {
- auto & hparams = model.hparams;
-
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
-
hparams.n_ctx = n_ctx;
- n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
-
- if (n_parts < 1) {
- n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
- }
-
- // temp warning to tell the user to use "--n_parts"
- if (hparams.f16 == 4 && n_parts != 1) {
- fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
- fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
- }
-
- if (hparams.n_layer == 32) {
- model.type = e_model::MODEL_7B;
- }
-
- if (hparams.n_layer == 40) {
- model.type = e_model::MODEL_13B;
- }
-
- if (hparams.n_layer == 60) {
- model.type = e_model::MODEL_30B;
- }
-
- if (hparams.n_layer == 80) {
- model.type = e_model::MODEL_65B;
- }
-
- fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
- fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
- fprintf(stderr, "%s: type = %d\n", __func__, model.type);
- }
-
- // load vocab
- {
- std::string word;
- vocab.id_to_token.resize(model.hparams.n_vocab);
- std::vector<char> tmp(64);
-
- for (int i = 0; i < model.hparams.n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
-
- word.resize(len);
- if (len > 0) {
- tmp.resize(len);
- fin.read(tmp.data(), len);
- word.assign(tmp.data(), len);
- } else {
- word.clear();
- }
-
- float score;
- fin.read((char *) &score, sizeof(score));
-
- vocab.token_to_id[word] = i;
-
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
+ fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
+ fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
+ fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
+ fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
+ fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
+ fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
+ fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
+ fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16);
+ fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
+ fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
+ fprintf(stderr, "%s: type = %u\n", __func__, model.type);
}
if (vocab_only) {
- return true;
- }
-
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- // wtype is for per-layer weights, while vtype is for other weights
- ggml_type wtype, vtype;
- switch (model.hparams.f16) {
- case 0: wtype = vtype = GGML_TYPE_F32; break;
- case 1: wtype = vtype = GGML_TYPE_F16; break;
- case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
- case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
- case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
- __func__, fname.c_str(), model.hparams.f16);
- return false;
- }
- }
-
- // map model into memory
- char *mm_addr = NULL;
- model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);
- if (model.mm_addr == NULL) {
- fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());
- return false;
+ return;
}
- mm_addr = (char *)model.mm_addr;
- fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));
auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto &hparams = model.hparams;
- const int n_layer = hparams.n_layer;
- ctx_size += (5 + 10*n_layer)*256; // object overhead
- fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
- }
+ size_t ctx_size, mmapped_size;
+ ml->calc_sizes(&ctx_size, &mmapped_size);
+ fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
// print memory requirements
{
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
- model.mm_length +
+ mmapped_size +
MEM_REQ_SCRATCH0.at(model.type) +
MEM_REQ_SCRATCH1.at(model.type) +
MEM_REQ_EVAL.at (model.type);
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
+ if (use_mlock) {
+ lctx.model.mlock_buf.init(lctx.model.buf.addr);
+ lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
+ }
struct ggml_init_params params = {
- /*.mem_size =*/ lctx.model.buf.size(),
- /*.mem_buffer =*/ lctx.model.buf.data(),
- /*.no_alloc =*/ true,
+ /*.mem_size =*/ lctx.model.buf.size,
+ /*.mem_buffer =*/ lctx.model.buf.addr,
+ /*.no_alloc =*/ ml->use_mmap,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
+ throw format("ggml_init() failed");
}
}
{
const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_vocab = hparams.n_vocab;
-
- model.layers.resize(n_layer);
-
- model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
-
- model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_vocab = hparams.n_vocab;
- // map by name
- model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
+ ml->ggml_ctx = ctx;
- model.tensors["norm.weight"] = model.norm;
- model.tensors["output.weight"] = model.output;
+ model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
+ model.norm = ml->get_tensor("norm.weight", {n_embd});
+ model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
- for (int i = 0; i < n_layer; ++i) {
+ model.layers.resize(n_layer);
+ for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ std::string layers_i = "layers." + std::to_string(i);
- layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
+ layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
+ layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
+ layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
- layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
+ layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
- // map by name
- model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
-
- model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
- model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
- model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
- model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
-
- model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
-
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
+ layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
+ layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
+ layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
- std::vector<uint8_t> tmp;
+ ml->done_getting_tensors();
- if (progress_callback) {
- progress_callback(0.0, progress_callback_user_data);
+ // populate `tensors_by_name`
+ for (llama_load_tensor & lt : ml->tensors_map.tensors) {
+ model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
}
- fprintf(stderr, "%s: loading tensors from '%s'\n", __func__, fname.c_str());
-
- // load weights
- {
- size_t total_size = 0;
- model.n_loaded = 0;
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
+ ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (fin.eof()) {
- break;
- }
-
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- fin.read(&name[0], length);
-
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
-
- auto tensor = model.tensors[name.data()];
-
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- if (0) {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- fprintf(stderr, "%24s - [%5d, %5d], type = %6s\n", name.data(), ne[0], ne[1], ftype_str[ftype]);
- }
-
- switch (ftype) {
- case 0: // f32
- case 1: // f16
- break;
- case 2: // q4_0
- case 3: // q4_1
- assert(ne[0] % 64 == 0);
- break;
- default:
- fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
- return false;
- };
-
- // load the tensor data into memory without copying or reading it
- size_t offset = fin.tellg();
- size_t tensor_data_size = ggml_nbytes(tensor);
- offset = (offset + 31) & -32;
- tensor->data = mm_addr + offset;
- fin.seekg(offset + tensor_data_size);
- total_size += tensor_data_size;
- model.n_loaded++;
-
- // progress
- if (progress_callback) {
- double current_progress = size_t(fin.tellg()) / double(file_size);
- progress_callback(current_progress, progress_callback_user_data);
- }
- }
-
- fin.close();
-
- fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
- if (model.n_loaded == 0) {
- fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
- } else if (model.n_loaded != (int) model.tensors.size()) {
- fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
- return false;
- }
- }
+ model.mapping = std::move(ml->mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
+}
- if (progress_callback) {
- progress_callback(1.0, progress_callback_user_data);
+static bool llama_model_load(
+ const std::string & fname,
+ llama_context & lctx,
+ int n_ctx,
+ ggml_type memory_type,
+ bool use_mmap,
+ bool use_mlock,
+ bool vocab_only,
+ llama_progress_callback progress_callback,
+ void *progress_callback_user_data) {
+ try {
+ llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
+ vocab_only, progress_callback, progress_callback_user_data);
+ return true;
+ } catch (const std::string & err) {
+ fprintf(stderr, "error loading model: %s\n", err.c_str());
+ return false;
}
-
- return true;
}
// evaluate the transformer
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size(),
- /*.mem_buffer =*/ buf_compute.data(),
+ /*.mem_size =*/ buf_compute.size,
+ /*.mem_buffer =*/ buf_compute.addr,
/*.no_alloc =*/ false,
};
size_t offs = 0;
while (offs < text.size()) {
llama_sp_symbol sym;
- size_t char_len = Min(text.size() - offs, utf8_len(text[offs]));
+ size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
sym.text = text.c_str() + offs;
sym.n = char_len;
offs += char_len;
}
}
- sample_top_k(logits_id, top_k > 0 ? Min(top_k, n_logits) : n_logits);
+ sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
// compute probs for the top k tokens
std::vector<float> probs;
// quantization
//
-// TODO: reuse code from the llama_model_load() somehow
-static bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
- ggml_type type = GGML_TYPE_Q4_1;
-
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
+ ggml_type quantized_type;
switch (itype) {
- case 2: type = GGML_TYPE_Q4_0; break;
- case 3: type = GGML_TYPE_Q4_1; break;
- default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
+ case 2: quantized_type = GGML_TYPE_Q4_0; break;
+ case 3: quantized_type = GGML_TYPE_Q4_1; break;
+ default: throw format("invalid quantization type %d\n", itype);
};
- if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
- fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
- return false;
- }
-
- llama_vocab vocab;
-
- printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
-
- auto finp = std::ifstream(fname_inp, std::ios::binary);
- if (!finp) {
- fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
- return false;
- }
-
- auto fout = std::ofstream(fname_out, std::ios::binary);
- if (!fout) {
- fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
- return false;
- }
-
- // verify magic
- {
- uint32_t magic;
- finp.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
- __func__, fname_inp.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- return report_bad_magic(fname_inp.c_str(), magic, LLAMA_FILE_MAGIC);
- }
-
- fout.write((char *) &magic, sizeof(magic));
-
- uint32_t format_version;
- finp.read((char *) &format_version, sizeof(format_version));
-
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
-
- fout.write((char *) &format_version, sizeof(format_version));
- }
-
- llama_hparams hparams;
-
- // load hparams
- {
- finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- finp.read((char *) &hparams.f16, sizeof(hparams.f16));
-
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
- printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
- printf("%s: n_head = %d\n", __func__, hparams.n_head);
- printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
- printf("%s: f16 = %d\n", __func__, hparams.f16);
-
- fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
- fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fout.write((char *) &itype, sizeof(hparams.f16));
- }
-
- // load vocab
- {
- const int32_t n_vocab = hparams.n_vocab;
-
- if (n_vocab != hparams.n_vocab) {
- fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
- return false;
- }
-
- std::vector<char> word(32);
- vocab.id_to_token.resize(n_vocab);
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- finp.read ((char *) &len, sizeof(len));
- fout.write((char *) &len, sizeof(len));
-
- word.resize(len);
- finp.read ((char *) &word[0], len);
- fout.write((char *) &word[0], len);
-
- float score;
- finp.read ((char *) &score, sizeof(score));
- fout.write((char *) &score, sizeof(score));
-
- vocab.token_to_id[word.data()] = i;
-
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word.data();
- tok_score.score = score;
- }
- }
-
- // load weights
- {
- size_t total_size_org = 0;
- size_t total_size_new = 0;
-
- std::vector<float> work;
-
- std::vector<uint8_t> data_u8;
- std::vector<ggml_fp16_t> data_f16;
- std::vector<float> data_f32;
-
- std::vector<int64_t> hist_all(1 << 4, 0);
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
-
- finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- finp.read(reinterpret_cast<char *>(&length), sizeof(length));
- finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (finp.eof()) {
- break;
- }
-
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- finp.read (&name[0], length);
-
- {
- // ensure tensor data is aligned
- uint64_t offset = finp.tellg();
- offset = (offset + 31) & -32;
- finp.seekg(offset);
- }
-
- {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
- }
-
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
-
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
-
- // quantize only 2D tensors
- quantize &= (n_dims == 2);
-
- if (quantize) {
- if (ftype != 0 && ftype != 1) {
- fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
- return false;
- }
-
- if (ftype == 1) {
- data_f16.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
- data_f32.resize(nelements);
- for (int i = 0; i < nelements; ++i) {
- data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
- }
- } else {
- data_f32.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
+ std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
+ /*vocab_only*/ false));
+ llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype);
+
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+ std::vector<int64_t> hist_all(1 << 4, 0);
+
+ size_t idx = 0;
+ for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
+ llama_buffer read_data;
+ read_data.resize(tensor.size);
+ tensor.data = read_data.addr;
+ model_loader->load_data_for(tensor);
+
+ printf("[%zu/%zu] %36s - %s, type = %6s, ",
+ ++idx, model_loader->tensors_map.tensors.size(),
+ tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
+ llama_format_type(tensor.type));
+
+ // This used to be a regex, but <regex> has an extreme cost to compile times.
+ bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
+
+ // quantize only 2D tensors
+ quantize &= (tensor.ne.size() == 2);
+
+ enum ggml_type new_type;
+ void * new_data;
+ size_t new_size;
+ llama_buffer work;
+
+ if (!quantize) {
+ new_type = tensor.type;
+ new_data = tensor.data;
+ new_size = tensor.size;
+ printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
+ } else {
+ new_type = quantized_type;
+ float * f32_data;
+ size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
+ llama_buffer f32_conv_buf;
+ if (tensor.type == GGML_TYPE_F32) {
+ f32_data = (float *) tensor.data;
+ } else if (tensor.type == GGML_TYPE_F16) {
+ f32_conv_buf.resize(nelements * sizeof(float));
+ f32_data = (float *) f32_conv_buf.addr;
+ auto f16_data = (const ggml_fp16_t *) tensor.data;
+ for (size_t i = 0; i < nelements; i++) {
+ f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
}
-
- ftype = itype;
} else {
- const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
-
- data_u8.resize(nelements*bpe);
- finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
+ throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type));
}
- fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fout.write(reinterpret_cast<char *>(&length), sizeof(length));
- fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- for (int i = 0; i < n_dims; ++i) {
- fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ printf("quantizing .. ");
+ fflush(stdout);
+
+ work.resize(nelements * 4); // upper bound on size
+ new_data = work.addr;
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ switch (new_type) {
+ case GGML_TYPE_Q4_0:
+ {
+ new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
+ } break;
+ default:
+ LLAMA_ASSERT(false);
}
- fout.write(&name[0], length);
- {
- // ensure tensor data is aligned
- uint64_t offset = fout.tellp();
- offset = (offset + 31) & -32;
- fout.seekp(offset);
+ printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
+ for (size_t i = 0; i < hist_cur.size(); i++) {
+ hist_all[i] += hist_cur[i];
}
- if (quantize) {
- printf("quantizing .. ");
- work.resize(nelements); // for quantization
-
- size_t cur_size = 0;
- std::vector<int64_t> hist_cur(1 << 4, 0);
-
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1:
- {
- cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
- } break;
- default:
- {
- fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
- return false;
- }
- }
-
- fout.write(reinterpret_cast<char *>(work.data()), cur_size);
- total_size_new += cur_size;
-
- printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- hist_all[i] += hist_cur[i];
- }
-
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- printf("%5.3f ", hist_cur[i] / float(nelements));
- }
- printf("\n");
- } else {
- printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
- fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
- total_size_new += data_u8.size();
+ for (size_t i = 0; i < hist_cur.size(); i++) {
+ printf("%5.3f ", hist_cur[i] / float(nelements));
}
-
- total_size_org += nelements * sizeof(float);
+ printf("\n");
}
+ total_size_org += tensor.size;
+ total_size_new += new_size;
+ file_saver.write_tensor(tensor, new_type, new_data, new_size);
+ }
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+ printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+ printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- {
- int64_t sum_all = 0;
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- sum_all += hist_all[i];
- }
+ {
+ int64_t sum_all = 0;
+ for (size_t i = 0; i < hist_all.size(); i++) {
+ sum_all += hist_all[i];
+ }
- printf("%s: hist: ", __func__);
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- printf("%5.3f ", hist_all[i] / float(sum_all));
- }
- printf("\n");
+ printf("%s: hist: ", __func__);
+ for (size_t i = 0; i < hist_all.size(); i++) {
+ printf("%5.3f ", hist_all[i] / float(sum_all));
}
+ printf("\n");
}
-
- finp.close();
- fout.close();
-
- return true;
}
//
params.seed = time(NULL);
}
+ unsigned cur_percentage = 0;
+ if (params.progress_callback == NULL) {
+ params.progress_callback_user_data = &cur_percentage;
+ params.progress_callback = [](float progress, void * ctx) {
+ unsigned * cur_percentage_p = (unsigned *) ctx;
+ unsigned percentage = (unsigned) (100 * progress);
+ while (percentage > *cur_percentage_p) {
+ ++*cur_percentage_p;
+ fprintf(stderr, ".");
+ fflush(stderr);
+ if (percentage >= 100) {
+ fprintf(stderr, "\n");
+ }
+ }
+ };
+ }
+
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, memory_type,
- params.vocab_only, params.progress_callback,
- params.progress_callback_user_data)) {
+ if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
+ params.use_mmap, params.use_mlock, params.vocab_only,
+ params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);
return nullptr;
}
- if (params.use_mlock) {
- char *err;
- if (!ggml_mlock(ctx->model.ctx,
- ctx->model.mm_addr,
- ctx->model.mm_length,
- &err)) {
- fprintf(stderr, "%s\n", err);
- free(err);
- llama_free(ctx);
- return nullptr;
- }
- }
-
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
}
void llama_free(struct llama_context * ctx) {
- kv_cache_free(ctx->model.kv_self);
-
- if (ctx->model.ctx) {
- ggml_free(ctx->model.ctx);
- }
-
- if (ctx->model.mm_addr) {
- munmap_file(ctx->model.mm_addr, ctx->model.mm_length);
- }
-
delete ctx;
}
const char * fname_inp,
const char * fname_out,
int itype) {
- if (!llama_model_quantize_internal(fname_inp, fname_out, itype)) {
- fprintf(stderr, "%s: failed to quantize\n", __func__);
+ try {
+ llama_model_quantize_internal(fname_inp, fname_out, itype);
+ return 0;
+ } catch (const std::string & err) {
+ fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
return 1;
}
-
- return 0;
}
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
- return ctx->model.kv_self.buf.data();
+ return ctx->model.kv_self.buf.addr;
}
// Returns the size of the KV cache
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
- return ctx->model.kv_self.buf.size();
+ return ctx->model.kv_self.buf.size;
}
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
size_t n_size,
int n_token_count) {
// Make sure we have the same kv cache setup
- LLAMA_ASSERT(ctx->model.kv_self.buf.size() == n_size);
- memcpy(ctx->model.kv_self.buf.data(), kv_cache, n_size);
+ LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
+ memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
ctx->model.kv_self.n = n_token_count;
}
void llama_print_timings(struct llama_context * ctx) {
const int64_t t_end_us = ggml_time_us();
- const int32_t n_sample = Max(1, ctx->n_sample);
- const int32_t n_eval = Max(1, ctx->n_eval);
- const int32_t n_p_eval = Max(1, ctx->n_p_eval);
+ const int32_t n_sample = std::max(1, ctx->n_sample);
+ const int32_t n_eval = std::max(1, ctx->n_eval);
+ const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
}
// For internal test use
-std::unordered_map<std::string, struct ggml_tensor *>& llama_internal_get_tensor_map(struct llama_context * ctx) {
- return ctx->model.tensors;
+std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
+ return ctx->model.tensors_by_name;
}