]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llm : add Refact model (#3329)
authords5t5 <redacted>
Wed, 4 Oct 2023 13:23:39 +0000 (06:23 -0700)
committerGitHub <redacted>
Wed, 4 Oct 2023 13:23:39 +0000 (16:23 +0300)
* add refact model

* resolve comments

* rebase to the latest

* solve alibi cpu error

---------

Co-authored-by: Georgi Gerganov <redacted>
convert-refact-hf-to-gguf.py [new file with mode: 0755]
ggml.c
gguf-py/gguf/gguf.py
llama.cpp

diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py
new file mode 100755 (executable)
index 0000000..e0cd417
--- /dev/null
@@ -0,0 +1,318 @@
+#!/usr/bin/env python3
+# HF refact--> gguf conversion
+
+from __future__ import annotations
+
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from transformers import AutoTokenizer  # type: ignore[import]
+
+if "NO_LOCAL_GGUF" not in os.environ:
+    sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
+import gguf
+
+
+def bytes_to_unicode():
+    # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+    """
+    Returns list of utf-8 byte and a corresponding list of unicode strings.
+    The reversible bpe codes work on unicode strings.
+    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+    This is a significant percentage of your normal, say, 32K bpe vocab.
+    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+    And avoids mapping to whitespace/control characters the bpe code barfs on.
+    """
+    bs = (
+        list(range(ord("!"), ord("~") + 1))
+        + list(range(ord("¡"), ord("¬") + 1))
+        + list(range(ord("®"), ord("ÿ") + 1))
+    )
+    cs = bs[:]
+    n = 0
+    for b in range(2**8):
+        if b not in bs:
+            bs.append(b)
+            cs.append(2**8 + n)
+            n += 1
+    return dict(zip(bs, (chr(n) for n in cs)))
+
+
+def count_model_parts(dir_model: Path) -> int:
+    num_parts = 0
+    for filename in os.listdir(dir_model):
+        if filename.startswith("pytorch_model-"):
+            num_parts += 1
+
+    if num_parts > 0:
+        print("gguf: found " + str(num_parts) + " model parts")
+    return num_parts
+
+
+def parse_args() -> argparse.Namespace:
+    parser = argparse.ArgumentParser(
+        description="Convert a Refact model to a GGML compatible file"
+    )
+    parser.add_argument(
+        "--vocab-only",
+        action="store_true",
+        help="extract only the vocab",
+    )
+    parser.add_argument(
+        "--outfile",
+        type=Path,
+        help="path to write to; default: based on input",
+    )
+    parser.add_argument(
+        "model",
+        type=Path,
+        help="directory containing model file, or model file itself (*.bin)",
+    )
+    parser.add_argument(
+        "ftype",
+        type=int,
+        choices=[0, 1],
+        default=1,
+        nargs="?",
+        help="output format - use 0 for float32, 1 for float16",
+    )
+    return parser.parse_args()
+
+
+args = parse_args()
+
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+    print(f"Error: {args.model} is not a directory", file=sys.stderr)
+    sys.exit(1)
+
+# possible tensor data types
+#   ftype == 0 -> float32
+#   ftype == 1 -> float16
+
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+if args.outfile is not None:
+    fname_out = args.outfile
+else:
+    # output in the same directory as the model by default
+    fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
+
+print("gguf: loading model " + dir_model.name)
+
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+    hparams = json.load(f)
+
+if hparams["architectures"][0] != "GPTRefactForCausalLM":
+    print("Model architecture not supported: " + hparams["architectures"][0])
+
+    sys.exit(1)
+
+# get number of model parts
+num_parts = count_model_parts(dir_model)
+
+ARCH = gguf.MODEL_ARCH.REFACT
+gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
+
+print("gguf: get model metadata")
+
+# Get refact feed forward dimension
+hidden_dim = hparams["n_embd"]
+inner_dim = 4 * hidden_dim
+hidden_dim = int(2 * inner_dim / 3)
+multiple_of = 256
+ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+block_count = hparams["n_layer"]
+
+gguf_writer.add_name("Refact")
+# refact uses Alibi. So this is from config.json which might be used by training.
+gguf_writer.add_context_length(hparams["n_positions"])
+gguf_writer.add_embedding_length(hparams["n_embd"])
+
+gguf_writer.add_feed_forward_length(ff_dim)
+gguf_writer.add_block_count(block_count)
+gguf_writer.add_head_count(hparams["n_head"])
+gguf_writer.add_head_count_kv(1)
+gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
+gguf_writer.add_file_type(ftype)
+
+# TOKENIZATION
+
+print("gguf: get tokenizer metadata")
+
+tokens: list[bytearray] = []
+scores: list[float] = []
+toktypes: list[int] = []
+
+tokenizer_json_file = dir_model / "tokenizer.json"
+if not tokenizer_json_file.is_file():
+    print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
+    sys.exit(1)
+
+# gpt2 tokenizer
+gguf_writer.add_tokenizer_model("gpt2")
+
+with open(tokenizer_json_file, "r", encoding="utf-8") as f:
+    tokenizer_json = json.load(f)
+
+print("gguf: get gpt2 tokenizer vocab")
+
+# The number of tokens in tokenizer.json can differ from the expected vocab size.
+# This causes downstream issues with mismatched tensor sizes when running the inference
+vocab_size = (
+    hparams["vocab_size"]
+    if "vocab_size" in hparams
+    else len(tokenizer_json["model"]["vocab"])
+)
+
+tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
+
+reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v: k for k, v in byte_encoder.items()}
+
+for i in range(vocab_size):
+    if i in reverse_vocab:
+        text = reverse_vocab[i]
+        try:
+            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
+        except KeyError:
+            text = bytearray()
+            for c in reverse_vocab[i]:
+                if ord(c) < 256:  # single byte character
+                    text.append(byte_decoder[ord(c)])
+                else:  # multibyte special token character
+                    text.extend(c.encode("utf-8"))
+    else:
+        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
+        pad_token = f"[PAD{i}]".encode("utf8")
+        text = bytearray(pad_token)
+
+    tokens.append(text)
+    scores.append(0.0)  # dymmy
+    toktypes.append(gguf.TokenType.NORMAL)  # dummy
+
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+
+special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
+special_vocab.add_to_gguf(gguf_writer)
+
+# TENSORS
+
+tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
+
+# params for qkv transform
+n_head = hparams["n_head"]
+n_head_kv = 1
+
+head_dim = hparams["n_embd"] // n_head
+
+# tensor info
+print("gguf: get tensor metadata")
+
+if num_parts == 0:
+    part_names = iter(("pytorch_model.bin",))
+else:
+    part_names = (
+        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
+    )
+for part_name in part_names:
+    if args.vocab_only:
+        break
+    print("gguf: loading model part '" + part_name + "'")
+    model_part = torch.load(dir_model / part_name, map_location="cpu")
+
+    for i in range(block_count):
+        if f"transformer.h.{i}.attn.kv.weight" in model_part:
+            data = model_part[f"transformer.h.{i}.attn.kv.weight"]
+            model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
+                : n_head_kv * head_dim
+            ]
+            model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
+                n_head_kv * head_dim :
+            ]
+            del model_part[f"transformer.h.{i}.attn.kv.weight"]
+        if f"transformer.h.{i}.attn.q.weight" in model_part:
+            model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
+                f"transformer.h.{i}.attn.q.weight"
+            ]
+            del model_part[f"transformer.h.{i}.attn.q.weight"]
+        if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
+            data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
+            model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
+            model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
+            del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
+
+    for name in model_part.keys():
+        data = model_part[name]
+
+        old_dtype = data.dtype
+
+        # convert any unsupported data types to float32
+        if data.dtype != torch.float16 and data.dtype != torch.float32:
+            data = data.to(torch.float32)
+
+        data = data.squeeze().numpy()
+
+        # map tensor names
+        new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
+        if new_name is None:
+            print("Can not map tensor '" + name + "'")
+            sys.exit()
+
+        n_dims = len(data.shape)
+        data_dtype = data.dtype
+
+        # if f32 desired, convert any float16 to float32
+        if ftype == 0 and data_dtype == np.float16:
+            data = data.astype(np.float32)
+
+        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+            data = data.astype(np.float32)
+
+        # if f16 desired, convert any float32 2-dim weight tensors to float16
+        if (
+            ftype == 1
+            and data_dtype == np.float32
+            and name.endswith(".weight")
+            and n_dims == 2
+        ):
+            data = data.astype(np.float16)
+
+        print(
+            new_name
+            + ", n_dims = "
+            + str(n_dims)
+            + ", "
+            + str(old_dtype)
+            + " --> "
+            + str(data.dtype)
+        )
+
+        gguf_writer.add_tensor(new_name, data)
+
+
+print("gguf: write header")
+gguf_writer.write_header_to_file()
+print("gguf: write metadata")
+gguf_writer.write_kv_data_to_file()
+if not args.vocab_only:
+    print("gguf: write tensors")
+    gguf_writer.write_tensors_to_file()
+
+gguf_writer.close()
+
+print(f"gguf: model successfully exported to '{fname_out}'")
+print("")
diff --git a/ggml.c b/ggml.c
index 4a94b0f33faf9327267c702b78a00e46f6f370a0..f56d6ac721b0f36df7444efd342f377da147ef99 100644 (file)
--- a/ggml.c
+++ b/ggml.c
@@ -13082,7 +13082,6 @@ static void ggml_compute_forward_alibi_f32(
         return;
     }
 
-    const int n_past = ((int32_t *) dst->op_params)[0];
     const int n_head = ((int32_t *) dst->op_params)[1];
     float max_bias;
     memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
@@ -13103,7 +13102,6 @@ static void ggml_compute_forward_alibi_f32(
     //const int nb3 = src0->nb[3];
 
     GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(ne1 + n_past == ne0);
     GGML_ASSERT(n_head == ne2);
 
     // add alibi to src0 (KQ_scaled)
index c975da0cb37d9724c61e3fd93801b43de9f53a13..a2c570d7ebf1b68aa1a4fef4b6e1141543f5666a 100644 (file)
@@ -85,6 +85,7 @@ class MODEL_ARCH(IntEnum):
     GPTNEOX       : int = auto()
     MPT           : int = auto()
     STARCODER     : int = auto()
+    REFACT        : int = auto()
     BERT          : int = auto()
 
 
@@ -118,6 +119,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.GPTNEOX:        "gptneox",
     MODEL_ARCH.MPT:            "mpt",
     MODEL_ARCH.STARCODER:      "starcoder",
+    MODEL_ARCH.REFACT:         "refact",
     MODEL_ARCH.BERT:           "bert",
 }
 
@@ -247,6 +249,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.REFACT: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     MODEL_ARCH.GPT2: [
         # TODO
     ],
@@ -271,7 +287,7 @@ class TensorNameMap:
         # Token embeddings
         MODEL_TENSOR.TOKEN_EMBD: (
             "gpt_neox.embed_in",            # gptneox
-            "transformer.wte",              # gpt2 gpt-j mpt
+            "transformer.wte",              # gpt2 gpt-j mpt refact
             "transformer.word_embeddings",  # falcon
             "model.embed_tokens",           # llama-hf
             "tok_embeddings",               # llama-pth
@@ -304,6 +320,7 @@ class TensorNameMap:
             "norm",                       # llama-pth
             "embeddings.LayerNorm",       # bert
             "transformer.norm_f",         # mpt
+            "ln_f",                       # refact
         ),
 
         # Rope frequencies
@@ -316,7 +333,7 @@ class TensorNameMap:
         # Attention norm
         MODEL_TENSOR.ATTN_NORM: (
             "gpt_neox.layers.{bid}.input_layernorm",           # gptneox
-            "transformer.h.{bid}.ln_1",                        # gpt2 gpt-j
+            "transformer.h.{bid}.ln_1",                        # gpt2 gpt-j refact
             "transformer.blocks.{bid}.norm_1",                 # mpt
             "transformer.h.{bid}.input_layernorm",             # falcon7b
             "transformer.h.{bid}.ln_mlp",                      # falcon40b
@@ -365,7 +382,7 @@ class TensorNameMap:
         # Attention output
         MODEL_TENSOR.ATTN_OUT: (
             "gpt_neox.layers.{bid}.attention.dense",       # gptneox
-            "transformer.h.{bid}.attn.c_proj",             # gpt2
+            "transformer.h.{bid}.attn.c_proj",             # gpt2 refact
             "transformer.blocks.{bid}.attn.out_proj",      # mpt
             "transformer.h.{bid}.self_attention.dense",    # falcon
             "model.layers.{bid}.self_attn.o_proj",         # llama-hf
@@ -383,7 +400,7 @@ class TensorNameMap:
         # Feed-forward norm
         MODEL_TENSOR.FFN_NORM: (
             "gpt_neox.layers.{bid}.post_attention_layernorm",  # gptneox
-            "transformer.h.{bid}.ln_2",                        # gpt2
+            "transformer.h.{bid}.ln_2",                        # gpt2 refact
             "transformer.blocks.{bid}.norm_2",                 # mpt
             "model.layers.{bid}.post_attention_layernorm",     # llama-hf
             "layers.{bid}.ffn_norm",                           # llama-pth
@@ -396,7 +413,7 @@ class TensorNameMap:
             "transformer.h.{bid}.mlp.c_fc",             # gpt2
             "transformer.blocks.{bid}.ffn.up_proj",     # mpt
             "transformer.h.{bid}.mlp.dense_h_to_4h",    # falcon
-            "model.layers.{bid}.mlp.up_proj",           # llama-hf
+            "model.layers.{bid}.mlp.up_proj",           # llama-hf refact
             "layers.{bid}.feed_forward.w3",             # llama-pth
             "encoder.layer.{bid}.intermediate.dense",   # bert
             "transformer.h.{bid}.mlp.fc_in",            # gpt-j
@@ -404,14 +421,14 @@ class TensorNameMap:
 
         # Feed-forward gate
         MODEL_TENSOR.FFN_GATE: (
-            "model.layers.{bid}.mlp.gate_proj", # llama-hf
+            "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
             "layers.{bid}.feed_forward.w1",     # llama-pth
         ),
 
         # Feed-forward down
         MODEL_TENSOR.FFN_DOWN: (
             "gpt_neox.layers.{bid}.mlp.dense_4h_to_h",  # gptneox
-            "transformer.h.{bid}.mlp.c_proj",           # gpt2
+            "transformer.h.{bid}.mlp.c_proj",           # gpt2 refact
             "transformer.blocks.{bid}.ffn.down_proj",   # mpt
             "transformer.h.{bid}.mlp.dense_4h_to_h",    # falcon
             "model.layers.{bid}.mlp.down_proj",         # llama-hf
index a40da68391853c62d183c3c0d26806dd1bda5461..08d6c162a5d7ce47aae104f4d60ea6bf2e0fcf49 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -165,6 +165,7 @@ enum llm_arch {
     LLM_ARCH_GPTNEOX,
     LLM_ARCH_MPT,
     LLM_ARCH_STARCODER,
+    LLM_ARCH_REFACT,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -177,6 +178,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
     { LLM_ARCH_MPT,             "mpt"       },
     { LLM_ARCH_BAICHUAN,        "baichuan"  },
     { LLM_ARCH_STARCODER,       "starcoder" },
+    { LLM_ARCH_REFACT,          "refact" },
 };
 
 enum llm_kv {
@@ -397,6 +399,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
         },
     },
+    {
+        LLM_ARCH_REFACT,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -1927,6 +1946,14 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_REFACT:
+            {
+                GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
+                switch (hparams.n_layer) {
+                    case 32: model.type = e_model::MODEL_1B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     }
 
@@ -2164,6 +2191,7 @@ static void llm_load_tensors(
         const auto tn = LLM_TN(model.arch);
         switch (model.arch) {
             case LLM_ARCH_LLAMA:
+            case LLM_ARCH_REFACT:
                 {
                     model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
 
@@ -3357,6 +3385,353 @@ static struct ggml_cgraph * llm_build_baichaun(
     return gf;
 }
 
+static struct ggml_cgraph * llm_build_refact(
+         llama_context & lctx,
+     const llama_batch & batch) {
+    const auto & model   = lctx.model;
+    const auto & hparams = model.hparams;
+    const auto & cparams = lctx.cparams;
+
+    const auto & kv_self = lctx.kv_self;
+
+    GGML_ASSERT(!!kv_self.ctx);
+
+    const int64_t n_embd      = hparams.n_embd;
+    const int64_t n_layer     = hparams.n_layer;
+    const int64_t n_ctx       = cparams.n_ctx;
+    const int64_t n_head      = hparams.n_head;
+    const int64_t n_head_kv   = hparams.n_head_kv;
+    const int64_t n_embd_head = hparams.n_embd_head();
+    const int64_t n_embd_gqa  = hparams.n_embd_gqa();
+
+    const float norm_rms_eps = hparams.f_norm_rms_eps;
+
+    const int n_gpu_layers = model.n_gpu_layers;
+
+    const int32_t n_tokens = batch.n_tokens;
+    const int32_t n_kv     = ggml_allocr_is_measure(lctx.alloc) ? n_ctx            : kv_self.n;
+    const int32_t kv_head  = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
+
+    // printf("n_kv = %d\n", n_kv);
+
+    auto & buf_compute = lctx.buf_compute;
+
+    struct ggml_init_params params = {
+        /*.mem_size   =*/ buf_compute.size,
+        /*.mem_buffer =*/ buf_compute.data,
+        /*.no_alloc   =*/ false,
+    };
+
+    params.no_alloc = true;
+
+    struct ggml_context * ctx0 = ggml_init(params);
+
+    ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+    struct ggml_tensor * cur;
+    struct ggml_tensor * inpL;
+
+    if (batch.token) {
+        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+
+        ggml_allocr_alloc(lctx.alloc, inp_tokens);
+        if (!ggml_allocr_is_measure(lctx.alloc)) {
+            memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
+        }
+        ggml_set_name(inp_tokens, "inp_tokens");
+
+        inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
+    } else {
+#ifdef GGML_USE_MPI
+        GGML_ASSERT(false && "not implemented");
+#endif
+
+        inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
+
+        ggml_allocr_alloc(lctx.alloc, inpL);
+        if (!ggml_allocr_is_measure(lctx.alloc)) {
+            memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
+        }
+    }
+
+    const int i_gpu_start = n_layer - n_gpu_layers;
+    (void) i_gpu_start;
+
+    // offload functions set the tensor output backend to GPU
+    // tensors are GPU-accelerated if any input or the output has been offloaded
+    offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
+    offload_func_t offload_func_kq = llama_nop;
+    offload_func_t offload_func_v  = llama_nop;
+
+#ifdef GGML_USE_CUBLAS
+    if (n_gpu_layers > n_layer) {
+        offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
+    }
+    if (n_gpu_layers > n_layer + 1) {
+        offload_func_v  = ggml_cuda_assign_buffers_no_alloc;
+    }
+    if (n_gpu_layers > n_layer + 2) {
+        offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
+    }
+#endif // GGML_USE_CUBLAS
+
+    // KQ_scale
+    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+    ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
+    ggml_allocr_alloc(lctx.alloc, KQ_scale);
+    if (!ggml_allocr_is_measure(lctx.alloc)) {
+        ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
+    }
+
+    // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+    struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
+    offload_func_kq(KQ_mask);
+    ggml_set_name(KQ_mask, "KQ_mask");
+    ggml_allocr_alloc(lctx.alloc, KQ_mask);
+    if (!ggml_allocr_is_measure(lctx.alloc)) {
+        float * data = (float *) KQ_mask->data;
+        memset(data, 0, ggml_nbytes(KQ_mask));
+
+        for (int h = 0; h < 1; ++h) {
+            for (int j = 0; j < n_tokens; ++j) {
+                const llama_pos    pos    = batch.pos[j];
+                const llama_seq_id seq_id = batch.seq_id[j];
+
+                for (int i = 0; i < n_kv; ++i) {
+                    if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
+                        data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
+                    }
+                }
+            }
+        }
+    }
+
+    for (int il = 0; il < n_layer; ++il) {
+        ggml_format_name(inpL, "layer_inp_%d", il);
+
+        offload_func_t offload_func = llama_nop;
+
+#ifdef GGML_USE_CUBLAS
+        if (il >= i_gpu_start) {
+            offload_func = ggml_cuda_assign_buffers_no_alloc;
+        }
+#endif // GGML_USE_CUBLAS
+
+        struct ggml_tensor * inpSA = inpL;
+
+        // norm
+        {
+            cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
+            offload_func(cur);
+            ggml_set_name(cur, "rms_norm_0");
+
+            // cur = cur*attn_norm(broadcasted)
+            cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
+            offload_func(cur);
+            ggml_set_name(cur, "attention_norm_0");
+        }
+
+        // self-attention
+        {
+            // compute Q and K
+            struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+            offload_func_kq(tmpk);
+            ggml_set_name(tmpk, "tmpk");
+
+            struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+            offload_func_kq(tmpq);
+            ggml_set_name(tmpq, "tmpq");
+
+            struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
+            offload_func_kq(Kcur);
+            ggml_set_name(Kcur, "Kcur");
+
+            struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens);
+            offload_func_kq(Qcur);
+            ggml_set_name(Qcur, "Qcur");
+
+            // store key and value to memory
+            {
+                // compute the transposed [n_tokens, n_embd] V matrix
+
+                struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                offload_func_v(tmpv);
+                ggml_set_name(tmpv, "tmpv");
+
+                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
+                offload_func_v(Vcur);
+                ggml_set_name(Vcur, "Vcur");
+
+                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
+                offload_func_kq(k);
+                ggml_set_name(k, "k");
+
+                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
+                        (   n_ctx)*ggml_element_size(kv_self.v),
+                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
+                offload_func_v(v);
+                ggml_set_name(v, "v");
+
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+            }
+
+            struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+            offload_func_kq(Q);
+            ggml_set_name(Q, "Q");
+
+            struct ggml_tensor * K =
+                ggml_view_3d(ctx0, kv_self.k,
+                        n_embd_head, n_kv, n_head_kv,
+                        ggml_element_size(kv_self.k)*n_embd_gqa,
+                        ggml_element_size(kv_self.k)*n_embd_head,
+                        ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
+            offload_func_kq(K);
+            ggml_set_name(K, "K");
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+            offload_func_kq(KQ);
+            ggml_set_name(KQ, "KQ");
+
+            // KQ_scaled = KQ / sqrt(n_embd_head)
+            // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
+            struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
+            offload_func_kq(KQ_scaled);
+            ggml_set_name(KQ_scaled, "KQ_scaled");
+
+            // KQ_masked = mask_past(KQ_scaled)
+            struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
+            ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
+
+            struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
+            offload_func_kq(KQ_masked);
+            ggml_set_name(KQ_masked, "KQ_masked");
+
+            // KQ = soft_max(KQ_masked)
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+            offload_func_v(KQ_soft_max);
+            ggml_set_name(KQ_soft_max, "KQ_soft_max");
+
+            // split cached V into n_head heads
+            struct ggml_tensor * V =
+                ggml_view_3d(ctx0, kv_self.v,
+                        n_kv, n_embd_head, n_head_kv,
+                        ggml_element_size(kv_self.v)*n_ctx,
+                        ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
+                        ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
+            offload_func_v(V);
+            ggml_set_name(V, "V");
+
+#if 1
+            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+            offload_func_v(KQV);
+            ggml_set_name(KQV, "KQV");
+#else
+            // make V contiguous in memory to speed up the matmul, however we waste time on the copy
+            // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
+            // is there a better way?
+            struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
+            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
+#endif
+
+            // KQV_merged = KQV.permute(0, 2, 1, 3)
+            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+            offload_func_v(KQV_merged);
+            ggml_set_name(KQV_merged, "KQV_merged");
+
+            // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
+            cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
+            offload_func_v(cur);
+            ggml_set_name(cur, "KQV_merged_contiguous");
+
+            // projection (no bias)
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].wo,
+                    cur);
+            offload_func(cur);
+            ggml_set_name(cur, "result_wo");
+        }
+
+        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+        offload_func(inpFF);
+        ggml_set_name(inpFF, "inpFF");
+
+        // feed-forward network
+        {
+            // norm
+            {
+                cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
+                offload_func(cur);
+                ggml_set_name(cur, "rms_norm_1");
+
+                // cur = cur*ffn_norm(broadcasted)
+                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
+                offload_func(cur);
+                ggml_set_name(cur, "ffn_norm");
+            }
+
+            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+                    model.layers[il].w3,
+                    cur);
+            offload_func(tmp);
+            ggml_set_name(tmp, "result_w3");
+
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].w1,
+                    cur);
+            offload_func(cur);
+            ggml_set_name(cur, "result_w1");
+
+            // SILU activation
+            cur = ggml_silu(ctx0, cur);
+            offload_func(cur);
+            ggml_set_name(cur, "silu");
+
+            cur = ggml_mul(ctx0, cur, tmp);
+            offload_func(cur);
+            ggml_set_name(cur, "silu_x_result_w3");
+
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].w2,
+                    cur);
+            offload_func(cur);
+            ggml_set_name(cur, "result_w2");
+        }
+
+        cur = ggml_add(ctx0, cur, inpFF);
+        offload_func(cur);
+        ggml_set_name(cur, "inpFF_+_result_w2");
+
+        // input for next layer
+        inpL = cur;
+    }
+
+    cur = inpL;
+
+    // norm
+    {
+        cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
+        offload_func_nr(cur);
+        ggml_set_name(cur, "rms_norm_2");
+
+        // cur = cur*norm(broadcasted)
+        cur = ggml_mul(ctx0, cur, model.output_norm);
+        // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
+        ggml_set_name(cur, "result_norm");
+    }
+
+    // lm_head
+    cur = ggml_mul_mat(ctx0, model.output, cur);
+    ggml_set_name(cur, "result_output");
+
+    ggml_build_forward_expand(gf, cur);
+
+    ggml_free(ctx0);
+
+    return gf;
+}
+
 static struct ggml_cgraph * llm_build_falcon(
          llama_context & lctx,
      const llama_batch & batch) {
@@ -3997,6 +4372,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm_build_starcoder(lctx, batch);
             } break;
+        case LLM_ARCH_REFACT:
+            {
+                result = llm_build_refact(lctx, batch);
+            } break;
         default:
             GGML_ASSERT(false);
     }
@@ -4130,7 +4509,8 @@ static int llama_decode_internal(
     // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
     const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
         model.arch == LLM_ARCH_BAICHUAN ||
-        model.arch == LLM_ARCH_FALCON;
+        model.arch == LLM_ARCH_FALCON ||
+        model.arch == LLM_ARCH_REFACT;
     const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
     if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
         n_threads = 1;