# runs it on all samples in the folder "./samples":
.PHONY: tiny.en
+.PHONY: tiny
.PHONY: base.en
-.PHONY: medium.en
+.PHONY: base
.PHONY: small.en
+.PHONY: small
+.PHONY: medium.en
+.PHONY: medium
+.PHONY: large
-tiny.en base.en medium.en small.en: main
+tiny.en tiny base.en base small.en small medium.en medium large: main
bash ./download-ggml-model.sh $@
@echo ""
@echo "==============================================="
- Plain C/C++ implementation without dependencies
- ARM_NEON and AVX intrinsics support
-- F16 support
+- Mixed F16 / F32 support
+- Low memory usage (Flash Attention + Flash Forward)
## Usage
```bash
$ make base.en
-Downloading base.en (142 MB just once)
-mkdir -p models
-models/ggml-base.en.bin 100%[=================================>] 141.11M 7.50MB/s in 19s
+gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
+g++ -pthread -O3 -std=c++11 -c main.cpp
+g++ -o main ggml.o main.o
+./main -h
+
+usage: ./main [options]
+
+options:
+ -h, --help show this help message and exit
+ -s SEED, --seed SEED RNG seed (default: -1)
+ -t N, --threads N number of threads to use during computation (default: 4)
+ -T N, --tokens N maximum number of tokens to generate per iteration (default: 64)
+ -v, --verbose verbose output
+ --translate translate from source language to english
+ -ps, --print_special print special tokens
+ -l LANG, --language LANG spoken language (default: en)
+ -m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
+ -f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
+
+bash ./download-ggml-model.sh base.en
+Downloading ggml model base.en ...
+models/ggml-base.en.bin 100%[=====================================>] 141.11M 7.84MB/s in 18s
+Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
+You can now use it like this:
+
+ $ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
+
===============================================
Running base.en on all samples in ./samples ...
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
-whisper_model_load: mem_required = 782.00 MB
+whisper_model_load: mem_required = 611.00 MB
whisper_model_load: adding 1607 extra tokens
-whisper_model_load: ggml ctx size = 186.26 MB
-whisper_model_load: memory size = 45.66 MB
+whisper_model_load: ggml ctx size = 163.43 MB
+whisper_model_load: memory size = 22.83 MB
whisper_model_load: model size = 140.54 MB
log_mel_spectrogram: n_sample = 176000, n_len = 1100
log_mel_spectrogram: recording length: 11.000000 s
- And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
+main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe ...
-main: load time = 60.62 ms
-main: mel time = 38.69 ms
-main: sample time = 2.36 ms
-main: encode time = 875.63 ms / 145.94 ms per layer
-main: decode time = 103.17 ms
-main: total time = 1081.13 ms
+ And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
+main: load time = 71.89 ms
+main: mel time = 36.95 ms
+main: sample time = 2.10 ms
+main: encode time = 700.94 ms / 116.82 ms per layer
+main: decode time = 86.14 ms
+main: total time = 898.72 ms
```
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
-You can download and run the other `.en` models as follows:
+You can download and run the other models as follows:
```
make tiny.en
+make tiny
make base.en
+make base
make small.en
+make small
make medium.en
+make medium
+make large
```
For detailed usage instructions, run: `./main -h`
## Limitations
-- Only `.en` models are supported
- Very basic greedy sampling scheme - always pick up the top token
- No timestamps
-- English only
- Inference only
- Runs on the CPU
- Only mono-channel 16-bit WAV is supported
| Model | Disk | Mem |
| --- | --- | --- |
-| tiny.en | 75 MB | ~600 MB |
-| base.en | 142 MB | ~800 MB |
-| small.en | 466 MB | ~1.6 GB |
-| medium.en | 1.5 GB | ~3.5 GB |
+| tiny | 75 MB | ~460 MB |
+| base | 142 MB | ~620 MB |
+| small | 466 MB | ~1.3 GB |
+| medium | 1.5 GB | ~2.8 GB |
+| large | 2.9 GB | ~4.9 GB |
## ggml format
ggml_path=$(dirname $(realpath $0))
# Whisper models
-models=( "tiny.en" "base.en" "small.en" "medium.en" )
+models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large" )
# list available models
function list_models {
#define UNUSED(x) (void)(x)
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
-#define GGML_ASSERT(x) assert(x)
+#define GGML_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+ abort(); \
+ } \
+ } while (0)
#ifdef GGML_USE_ACCELERATE
#include <Accelerate/Accelerate.h>
}
#endif
+//
+// global data
+//
+
+// precomputed gelu table for f16 (128 KB)
+static ggml_fp16_t table_gelu_f16[1 << 16];
+
+// precomputed exp table for f16 (128 KB)
+static ggml_fp16_t table_exp_f16[1 << 16];
+
//
// timing
//
// leftovers
for (int i = n32; i < n; ++i) {
- GGML_ASSERT(false); // should not end up here
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
}
#elif defined(__AVX2__)
// leftovers
for (int i = n32; i < n; ++i) {
- GGML_ASSERT(false);
+ //GGML_ASSERT(false);
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
}
#else
const ggml_float GELU_COEF_A = 0.044715;
const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
-inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) {
+inline static float ggml_gelu_f32(float x) {
+ return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
+}
+
+inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
- //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i])));
- //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
- const ggml_float xx = x[i];
- y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx)));
+ y[i] = ggml_gelu_f32(x[i]);
+ }
+}
+
+inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+ const uint16_t * i16 = (const uint16_t *) x;
+ for (int i = 0; i < n; ++i) {
+ y[i] = table_gelu_f16[i16[i]];
}
}
"ROPE",
"CONV_1D_1S",
"CONV_1D_2S",
+
+ "FLASH_ATTN",
+ "FLASH_FF",
};
const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"rope(x)",
"conv_1d_1s(x)",
"conv_1d_2s(x)",
+
+ "flash_attn(x)",
+ "flash_ff(x)",
};
//
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
+ static bool is_first_call = true;
+ if (is_first_call) {
+ const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
+
+ for (int i = 0; i < (1 << 16); ++i) {
+ uint16_t ii = (uint16_t) i;
+ const float f = ggml_fp16_to_fp32(*(ggml_fp16_t *)(&ii));
+ table_gelu_f16[i] = ggml_fp32_to_fp16(ggml_gelu_f32(f));
+ table_exp_f16[i] = ggml_fp32_to_fp16(exp(f));
+ }
+
+ const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
+
+ GGML_PRINT_DEBUG("%s: GELU table initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
+
+ is_first_call = false;
+ }
+
// find non-used context in g_state
struct ggml_context * ctx = NULL;
}
if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found");
+ GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
return NULL;
}
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n",
- i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
+ GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
+ __func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
if (ctx->mem_buffer_owned) {
free(ctx->mem_buffer);
/*.grad =*/ NULL,
/*.src0 =*/ NULL,
/*.src1 =*/ NULL,
+ /*.opt =*/ { NULL },
/*.n_tasks =*/ 0,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
return ggml_new_tensor(ctx, type, 4, ne);
}
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
+
+ ggml_set_i32(result, value);
+
+ return result;
+}
+
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
return tensor;
}
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
+
+ char * const data = tensor->data;
+
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+
+ return tensor;
+}
+
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
return tensor;
}
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ return ((int8_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ return ((int16_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ return ((int32_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ return ((float *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ ((float *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
- assert(tensor->nb[0] == sizeof(int8_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I16:
{
- assert(tensor->nb[0] == sizeof(int16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I32:
{
- assert(tensor->nb[0] == sizeof(int32_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
} break;
case GGML_TYPE_F16:
{
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
} break;
case GGML_TYPE_F32:
{
- assert(tensor->nb[0] == sizeof(float));
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
} break;
case GGML_TYPE_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
}
- assert(false);
return 0.0f;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
- assert(tensor->nb[0] == sizeof(int8_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
- assert(tensor->nb[0] == sizeof(int16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
- assert(tensor->nb[0] == sizeof(int32_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
} break;
case GGML_TYPE_F32:
{
- assert(tensor->nb[0] == sizeof(float));
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
}
}
return result;
}
+// ggml_flash_attn
+
+struct ggml_tensor * ggml_flash_attn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ bool masked) {
+ assert(ggml_can_mul_mat(k, q));
+ // TODO: check if vT can be multiplied by (k*qT)
+
+ bool is_node = false;
+
+ if (q->grad || k->grad || v->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
+
+ result->op = GGML_OP_FLASH_ATTN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = q;
+ result->src1 = k;
+ result->opt[0] = v;
+ result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
+
+ return result;
+}
+
+// ggml_flash_ff
+
+struct ggml_tensor * ggml_flash_ff(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b0,
+ struct ggml_tensor * b1,
+ struct ggml_tensor * c0,
+ struct ggml_tensor * c1) {
+ assert(ggml_can_mul_mat(b0, a));
+ // TODO: more checks
+
+ bool is_node = false;
+
+ if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
+
+ result->op = GGML_OP_FLASH_FF;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b0;
+ result->opt[0] = b1;
+ result->opt[1] = c0;
+ result->opt[2] = c1;
+
+ return result;
+}
+
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
GGML_ASSERT(false); // TODO: implement
}
} else {
- printf("%s: this is not optimal - fix me\n", __func__);
+ //printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
int id = 0;
}
ggml_float sum = 0.0;
+
for (int i = 0; i < nc; i++) {
- const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
- sum += v;
- p[i] = v;
+ if (p[i] == -INFINITY) {
+ p[i] = 0.0;
+ } else {
+ //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(p[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ p[i] = val;
+ }
}
assert(sum > 0.0f);
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
- // WHISPER
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
- // WHISPER
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
- // WHISPER
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
- // WHISPER
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
}
}
+// ggml_compute_forward_flash_attn
+
+void ggml_compute_forward_flash_attn_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int neq0 = q->ne[0];
+ const int neq1 = q->ne[1];
+ const int neq2 = q->ne[2];
+ const int neq3 = q->ne[3];
+
+ const int nek0 = k->ne[0];
+ const int nek1 = k->ne[1];
+ //const int nek2 = k->ne[2];
+ //const int nek3 = k->ne[3];
+
+ //const int nev0 = v->ne[0];
+ const int nev1 = v->ne[1];
+ //const int nev2 = v->ne[2];
+ //const int nev3 = v->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nbk0 = k->nb[0];
+ const int nbk1 = k->nb[1];
+ const int nbk2 = k->nb[2];
+ const int nbk3 = k->nb[3];
+
+ const int nbq0 = q->nb[0];
+ const int nbq1 = q->nb[1];
+ const int nbq2 = q->nb[2];
+ const int nbq3 = q->nb[3];
+
+ const int nbv0 = v->nb[0];
+ const int nbv1 = v->nb[1];
+ const int nbv2 = v->nb[2];
+ const int nbv3 = v->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = neq0;
+ const int N = neq1;
+ const int P = nek1 - N;
+ const int M = P + N;
+
+ GGML_ASSERT(ne0 == D);
+ GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(float));
+ GGML_ASSERT(nbk0 == sizeof(float));
+ GGML_ASSERT(nbv0 == sizeof(float));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0/sqrt((double) D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ float * S = (float *) params->wdata + ith*(M + CACHE_LINE_SIZE_F32);
+
+ for (int ic = 0; ic < nek1; ++ic) {
+ // k indices
+ const int ik3 = iq3;
+ const int ik2 = iq2;
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f32(neq0,
+ S + i1,
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+ }
+
+ // scale
+ ggml_vec_scale_f32(nek1, S, scale);
+
+ if (masked) {
+ for (int i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = -INFINITY;
+ }
+ }
+ }
+
+ // softmax
+ {
+ float max = -INFINITY;
+ for (int i = 0; i < M; i++) {
+ max = MAX(max, S[i]);
+ }
+
+ ggml_float sum = 0.0;
+
+ for (int i = 0; i < M; i++) {
+ if (S[i] == -INFINITY) {
+ S[i] = 0.0;
+ } else {
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ S[i] = val;
+ }
+ }
+
+ assert(sum > 0.0f);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(M, S, sum);
+ }
+
+ for (int ic = 0; ic < nev1; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_dot_f32(nek1,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
+ S);
+ }
+ }
+}
+
+void ggml_compute_forward_flash_attn_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int neq0 = q->ne[0];
+ const int neq1 = q->ne[1];
+ const int neq2 = q->ne[2];
+ const int neq3 = q->ne[3];
+
+ const int nek0 = k->ne[0];
+ const int nek1 = k->ne[1];
+ //const int nek2 = k->ne[2];
+ //const int nek3 = k->ne[3];
+
+ //const int nev0 = v->ne[0];
+ const int nev1 = v->ne[1];
+ //const int nev2 = v->ne[2];
+ //const int nev3 = v->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nbk0 = k->nb[0];
+ const int nbk1 = k->nb[1];
+ const int nbk2 = k->nb[2];
+ const int nbk3 = k->nb[3];
+
+ const int nbq0 = q->nb[0];
+ const int nbq1 = q->nb[1];
+ const int nbq2 = q->nb[2];
+ const int nbq3 = q->nb[3];
+
+ const int nbv0 = v->nb[0];
+ const int nbv1 = v->nb[1];
+ const int nbv2 = v->nb[2];
+ const int nbv3 = v->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = neq0;
+ const int N = neq1;
+ const int P = nek1 - N;
+ const int M = P + N;
+
+ GGML_ASSERT(ne0 == D);
+ GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0/sqrt((double) D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
+
+ for (int ic = 0; ic < nek1; ++ic) {
+ // k indices
+ const int ik3 = iq3;
+ const int ik2 = iq2;
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f16(neq0,
+ S + i1,
+ (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+ }
+
+ // scale
+ ggml_vec_scale_f32(nek1, S, scale);
+
+ if (masked) {
+ for (int i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = -INFINITY;
+ }
+ }
+ }
+
+ // softmax
+ {
+ float max = -INFINITY;
+ for (int i = 0; i < M; i++) {
+ max = MAX(max, S[i]);
+ }
+
+ ggml_float sum = 0.0;
+
+ for (int i = 0; i < M; i++) {
+ if (S[i] == -INFINITY) {
+ S[i] = 0.0;
+ } else {
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ S[i] = val;
+ }
+ }
+
+ assert(sum > 0.0f);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(M, S, sum);
+ }
+
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+ for (int i = 0; i < M; i++) {
+ S16[i] = ggml_fp32_to_fp16(S[i]);
+ }
+
+ for (int ic = 0; ic < nev1; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_dot_f16(nek1,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
+ S16);
+ }
+ }
+}
+
+void ggml_compute_forward_flash_attn(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ switch (q->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_flash_ff
+
+void ggml_compute_forward_flash_ff_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * a, // F16
+ const struct ggml_tensor * b0, // F16 fc_w
+ const struct ggml_tensor * b1, // F32 fc_b
+ const struct ggml_tensor * c0, // F16 proj_w
+ const struct ggml_tensor * c1, // F32 proj_b
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int nea0 = a->ne[0];
+ const int nea1 = a->ne[1];
+ const int nea2 = a->ne[2];
+ const int nea3 = a->ne[3];
+
+ const int neb00 = b0->ne[0];
+ const int neb01 = b0->ne[1];
+ //const int neb02 = b0->ne[2];
+ //const int neb03 = b0->ne[3];
+
+ const int neb10 = b1->ne[0];
+ const int neb11 = b1->ne[1];
+ //const int neb12 = b1->ne[2];
+ //const int neb13 = b1->ne[3];
+
+ const int nec00 = c0->ne[0];
+ const int nec01 = c0->ne[1];
+ //const int nec02 = c0->ne[2];
+ //const int nec03 = c0->ne[3];
+
+ const int nec10 = c1->ne[0];
+ const int nec11 = c1->ne[1];
+ //const int nec12 = c1->ne[2];
+ //const int nec13 = c1->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nba0 = a->nb[0];
+ const int nba1 = a->nb[1];
+ const int nba2 = a->nb[2];
+ const int nba3 = a->nb[3];
+
+ const int nbb00 = b0->nb[0];
+ const int nbb01 = b0->nb[1];
+ const int nbb02 = b0->nb[2];
+ const int nbb03 = b0->nb[3];
+
+ const int nbb10 = b1->nb[0];
+ //const int nbb11 = b1->nb[1];
+ //const int nbb12 = b1->nb[2];
+ //const int nbb13 = b1->nb[3];
+
+ const int nbc00 = c0->nb[0];
+ const int nbc01 = c0->nb[1];
+ const int nbc02 = c0->nb[2];
+ const int nbc03 = c0->nb[3];
+
+ const int nbc10 = c1->nb[0];
+ //const int nbc11 = c1->nb[1];
+ //const int nbc12 = c1->nb[2];
+ //const int nbc13 = c1->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = nea0;
+ //const int N = nea1;
+ const int M = neb01;
+
+ GGML_ASSERT(ne0 == nea0);
+ GGML_ASSERT(ne1 == nea1);
+ GGML_ASSERT(ne2 == nea2);
+
+ GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbb10 == sizeof(float));
+ GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbc10 == sizeof(float));
+
+ GGML_ASSERT(neb00 == D);
+ GGML_ASSERT(neb01 == M);
+ GGML_ASSERT(neb10 == M);
+ GGML_ASSERT(neb11 == 1);
+
+ GGML_ASSERT(nec00 == M);
+ GGML_ASSERT(nec01 == D);
+ GGML_ASSERT(nec10 == D);
+ GGML_ASSERT(nec11 == 1);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by a rows using ggml_vec_dot_f32
+
+ // total rows in a
+ const int nr = nea1*nea2*nea3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // a indices
+ const int ia3 = ir/(nea2*nea1);
+ const int ia2 = (ir - ia3*nea2*nea1)/nea1;
+ const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
+
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
+
+ for (int ic = 0; ic < neb01; ++ic) {
+ // b0 indices
+ const int ib03 = ia3;
+ const int ib02 = ia2;
+ const int ib01 = ic;
+
+ // S indices
+ const int i1 = ib01;
+
+ ggml_vec_dot_f16(nea0,
+ S + i1,
+ (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
+ (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
+ }
+
+ ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
+ //ggml_vec_gelu_f32(neb01, S, S);
+
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+ for (int i = 0; i < M; i++) {
+ S16[i] = ggml_fp32_to_fp16(S[i]);
+ }
+
+ ggml_vec_gelu_f16(neb01, S16, S16);
+
+ {
+ // dst indices
+ const int i1 = ia1;
+ const int i2 = ia2;
+ const int i3 = ia3;
+
+ for (int ic = 0; ic < nec01; ++ic) {
+
+ ggml_vec_dot_f16(neb01,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
+ S16);
+ }
+
+ ggml_vec_add_f32(nec01,
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) c1->data);
+ }
+ }
+}
+
+void ggml_compute_forward_flash_ff(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * a,
+ const struct ggml_tensor * b0,
+ const struct ggml_tensor * b1,
+ const struct ggml_tensor * c0,
+ const struct ggml_tensor * c1,
+ struct ggml_tensor * dst) {
+ switch (b0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(false); // TODO
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
/////////////////////////////////
void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
{
ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
} break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
+ } break;
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
};
}
{
GGML_ASSERT(false); // TODO: not implemented
} break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
case GGML_OP_NONE:
{
// nop
ggml_visit_parents(cgraph, node->src1);
}
+ for (int i = 0; i < GGML_MAX_OPT; ++i) {
+ if (node->opt[i]) {
+ ggml_visit_parents(cgraph, node->opt[i]);
+ }
+ }
+
if (node->op == GGML_OP_NONE && node->grad == NULL) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
assert(cgraph->n_leafs < GGML_MAX_NODES);
case GGML_OP_CONV_1D_1S:
case GGML_OP_CONV_1D_2S:
{
- // WHISPER
node->n_tasks = n_threads;
GGML_ASSERT(node->src0->ne[3] == 1);
GGML_ASSERT(false);
}
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = 0;
+
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = 0;
+
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
work_size = MAX(work_size, cur);
} break;
case GGML_OP_NONE:
#define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 16
+#define GGML_MAX_OPT 4
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
GGML_OP_CONV_1D_1S,
GGML_OP_CONV_1D_2S,
+ GGML_OP_FLASH_ATTN,
+ GGML_OP_FLASH_FF,
+
GGML_OP_COUNT,
};
struct ggml_tensor * grad;
struct ggml_tensor * src0;
struct ggml_tensor * src1;
+ struct ggml_tensor * opt[GGML_MAX_OPT];
// thread scheduling
int n_tasks;
int ne2,
int ne3);
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
+
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
struct ggml_tensor * a,
struct ggml_tensor * b);
+struct ggml_tensor * ggml_flash_attn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ bool masked);
+
+struct ggml_tensor * ggml_flash_ff(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b0,
+ struct ggml_tensor * b1,
+ struct ggml_tensor * c0,
+ struct ggml_tensor * c1);
+
//
// automatic differentiation
//
#include "ggml.h"
+#define USE_FLASH_ATTN
+#define USE_FLASH_FF
+
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include <thread>
#include <vector>
+// available whisper models
enum e_model {
MODEL_UNKNOWN,
MODEL_TINY,
MODEL_LARGE,
};
+const std::map<std::string, std::pair<int, std::string>> g_lang = {
+ { "en", { 0, "english", } },
+ { "zh", { 1, "chinese", } },
+ { "de", { 2, "german", } },
+ { "es", { 3, "spanish", } },
+ { "ru", { 4, "russian", } },
+ { "ko", { 5, "korean", } },
+ { "fr", { 6, "french", } },
+ { "ja", { 7, "japanese", } },
+ { "pt", { 8, "portuguese", } },
+ { "tr", { 9, "turkish", } },
+ { "pl", { 10, "polish", } },
+ { "ca", { 11, "catalan", } },
+ { "nl", { 12, "dutch", } },
+ { "ar", { 13, "arabic", } },
+ { "sv", { 14, "swedish", } },
+ { "it", { 15, "italian", } },
+ { "id", { 16, "indonesian", } },
+ { "hi", { 17, "hindi", } },
+ { "fi", { 18, "finnish", } },
+ { "vi", { 19, "vietnamese", } },
+ { "iw", { 20, "hebrew", } },
+ { "uk", { 21, "ukrainian", } },
+ { "el", { 22, "greek", } },
+ { "ms", { 23, "malay", } },
+ { "cs", { 24, "czech", } },
+ { "ro", { 25, "romanian", } },
+ { "da", { 26, "danish", } },
+ { "hu", { 27, "hungarian", } },
+ { "ta", { 28, "tamil", } },
+ { "no", { 29, "norwegian", } },
+ { "th", { 30, "thai", } },
+ { "ur", { 31, "urdu", } },
+ { "hr", { 32, "croatian", } },
+ { "bg", { 33, "bulgarian", } },
+ { "lt", { 34, "lithuanian", } },
+ { "la", { 35, "latin", } },
+ { "mi", { 36, "maori", } },
+ { "ml", { 37, "malayalam", } },
+ { "cy", { 38, "welsh", } },
+ { "sk", { 39, "slovak", } },
+ { "te", { 40, "telugu", } },
+ { "fa", { 41, "persian", } },
+ { "lv", { 42, "latvian", } },
+ { "bn", { 43, "bengali", } },
+ { "sr", { 44, "serbian", } },
+ { "az", { 45, "azerbaijani", } },
+ { "sl", { 46, "slovenian", } },
+ { "kn", { 47, "kannada", } },
+ { "et", { 48, "estonian", } },
+ { "mk", { 49, "macedonian", } },
+ { "br", { 50, "breton", } },
+ { "eu", { 51, "basque", } },
+ { "is", { 52, "icelandic", } },
+ { "hy", { 53, "armenian", } },
+ { "ne", { 54, "nepali", } },
+ { "mn", { 55, "mongolian", } },
+ { "bs", { 56, "bosnian", } },
+ { "kk", { 57, "kazakh", } },
+ { "sq", { 58, "albanian", } },
+ { "sw", { 59, "swahili", } },
+ { "gl", { 60, "galician", } },
+ { "mr", { 61, "marathi", } },
+ { "pa", { 62, "punjabi", } },
+ { "si", { 63, "sinhala", } },
+ { "km", { 64, "khmer", } },
+ { "sn", { 65, "shona", } },
+ { "yo", { 66, "yoruba", } },
+ { "so", { 67, "somali", } },
+ { "af", { 68, "afrikaans", } },
+ { "oc", { 69, "occitan", } },
+ { "ka", { 70, "georgian", } },
+ { "be", { 71, "belarusian", } },
+ { "tg", { 72, "tajik", } },
+ { "sd", { 73, "sindhi", } },
+ { "gu", { 74, "gujarati", } },
+ { "am", { 75, "amharic", } },
+ { "yi", { 76, "yiddish", } },
+ { "lo", { 77, "lao", } },
+ { "uz", { 78, "uzbek", } },
+ { "fo", { 79, "faroese", } },
+ { "ht", { 80, "haitian creole", } },
+ { "ps", { 81, "pashto", } },
+ { "tk", { 82, "turkmen", } },
+ { "nn", { 83, "nynorsk", } },
+ { "mt", { 84, "maltese", } },
+ { "sa", { 85, "sanskrit", } },
+ { "lb", { 86, "luxembourgish", } },
+ { "my", { 87, "myanmar", } },
+ { "bo", { 88, "tibetan", } },
+ { "tl", { 89, "tagalog", } },
+ { "mg", { 90, "malagasy", } },
+ { "as", { 91, "assamese", } },
+ { "tt", { 92, "tatar", } },
+ { "haw", { 93, "hawaiian", } },
+ { "ln", { 94, "lingala", } },
+ { "ha", { 95, "hausa", } },
+ { "ba", { 96, "bashkir", } },
+ { "jw", { 97, "javanese", } },
+ { "su", { 98, "sundanese", } },
+};
+
const size_t MB = 1024*1024;
const std::map<e_model, size_t> MEM_REQ_MODEL = {
- { MODEL_TINY, 100ull*MB },
- { MODEL_BASE, 190ull*MB },
- { MODEL_SMALL, 610ull*MB },
- { MODEL_MEDIUM, 1900ull*MB },
- { MODEL_LARGE, 3600ull*MB },
+ { MODEL_TINY, 86ull*MB },
+ { MODEL_BASE, 165ull*MB },
+ { MODEL_SMALL, 540ull*MB },
+ { MODEL_MEDIUM, 1650ull*MB },
+ { MODEL_LARGE, 3260ull*MB },
};
const std::map<e_model, size_t> MEM_REQ_ENCODE = {
};
const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
- { MODEL_TINY, 170ull*MB },
- { MODEL_BASE, 230ull*MB },
- { MODEL_SMALL, 350ull*MB },
- { MODEL_MEDIUM, 450ull*MB },
- { MODEL_LARGE, 570ull*MB },
+ { MODEL_TINY, 64ull*MB },
+ { MODEL_BASE, 84ull*MB },
+ { MODEL_SMALL, 128ull*MB },
+ { MODEL_MEDIUM, 172ull*MB },
+ { MODEL_LARGE, 216ull*MB },
};
const std::map<e_model, size_t> MEM_REQ_DECODE = {
id token_solm = 50361; // ??
id token_beg = 50363;
+ // available tasks
+ const id token_translate = 50358;
+ const id token_transcribe = 50359;
+
bool is_multilingual() const {
return n_vocab == 51865;
}
// command-line parameters
struct whisper_params {
- int32_t seed = -1; // RNG seed
+ int32_t seed = -1; // RNG seed, not used currently
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
+ // sampling parameter - used for the greedy strategy
int32_t max_tokens_per_iter = 64;
- bool verbose = false;
+ bool verbose = false;
+ bool translate = false;
bool print_special_tokens = false;
- std::string model = "models/ggml-base.en.bin"; // model path
-
+ std::string language = "en";
+ std::string model = "models/ggml-base.en.bin";
std::string fname_inp = "samples/jfk.wav";
};
params.max_tokens_per_iter = std::stoi(argv[++i]);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
+ } else if (arg == "--translate") {
+ params.translate = true;
+ } else if (arg == "-l" || arg == "--language") {
+ params.language = argv[++i];
+ if (g_lang.find(params.language) == g_lang.end()) {
+ fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
+ whisper_print_usage(argc, argv, params);
+ exit(0);
+ }
} else if (arg == "-ps" || arg == "--print_special") {
params.print_special_tokens = true;
} else if (arg == "-m" || arg == "--model") {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
- fprintf(stderr, " -v, --verbose verbose output\n");
- fprintf(stderr, " -ps, --print_special print special tokens\n");
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, " -f FNAME, --file FNAME\n");
- fprintf(stderr, " input WAV file path (default: %s)\n", params.fname_inp.c_str());
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
+ fprintf(stderr, " -v, --verbose verbose output\n");
+ fprintf(stderr, " --translate translate from source language to english\n");
+ fprintf(stderr, " -ps, --print_special print special tokens\n");
+ fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
+ fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
+ fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str());
fprintf(stderr, "\n");
}
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: type = %d\n", __func__, model.type);
+ // this is the total memory required to run the inference
const size_t mem_required =
MEM_REQ_MODEL.at(model.type) +
MEM_REQ_ENCODE.at(model.type) +
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
}
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_k
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_v
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_k
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_v
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
const int n_text_layer = hparams.n_text_layer;
const int n_text_ctx = hparams.n_text_ctx;
+ // key/value memory for the self-attention layer
{
const int n_mem = n_text_layer*n_text_ctx;
const int n_elements = n_text_state*n_mem;
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
+ // key/value memory for the cross-attention layer
{
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_mem = n_text_layer*n_audio_ctx;
const int n_elements = n_text_state*n_mem;
- model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
- model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
+ model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
const size_t memory_size =
Qcur),
Qcur);
- Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+ //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
- // no bias for Key
+ // note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
layer.attn_k_w,
cur);
- Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+ //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
layer.attn_v_w,
// ------
+#ifdef USE_FLASH_ATTN
struct ggml_tensor * Q =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Qcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctxL,
ggml_cpy(ctxL,
Kcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // F16 !
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
0, 2, 1, 3);
- //// BLAS attempt
- //struct ggml_tensor * KQ =
- // ggml_mul_mat(ctxL,
- // ggml_cpy(ctxL, K, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)),
- // ggml_cpy(ctxL, Q, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)));
+ struct ggml_tensor * V =
+ ggml_cpy(ctxL,
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ Vcur,
+ n_state/n_head, n_head, N),
+ 1, 2, 0, 3),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
+ );
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+ struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
+#else
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
- //struct ggml_tensor * K =
- // ggml_cpy(ctxL,
- // ggml_permute(ctxL,
- // ggml_reshape_3d(ctxL,
- // Kcur,
- // n_state/n_head, n_head, N),
- // 1, 2, 0, 3),
- // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
- // );
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Kcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
- //// K * Q
- //struct ggml_tensor * KQ = ggml_mul_mat(ctxL, ggml_transpose(ctxL, K), Q);
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
- //struct ggml_tensor * KQ_scaled =
- // ggml_scale(ctxL,
- // KQ,
- // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
- // );
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctxL,
+ KQ,
+ ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ );
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
//struct ggml_tensor * V_trans =
// ggml_permute(ctxL,
Vcur,
n_state/n_head, n_head, N),
0, 2, 1, 3),
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) // F16 !
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
);
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
+#endif
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
}
+#ifdef USE_FLASH_FF
+ cur = ggml_flash_ff(ctxL,
+ ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
+ layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
+#else
// fully connected
cur = ggml_mul_mat(ctxL,
layer.mlp_0_w,
cur = ggml_add(ctxL,
ggml_repeat(ctxL, layer.mlp_1_b, cur),
cur);
+#endif
}
// output from this layer
((int32_t *) position->data)[i] = n_past + i;
}
- // wte + wpe
+ // token encoding + position encoding
struct ggml_tensor * cur =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.d_te, embd),
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
- // no bias for Key
+ // note: no bias for Key
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
layer.attn_k_w,
cur);
// norm
{
- cur = ggml_norm(ctxL, inpCA); // Note we use inpCA here
+ cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
// cur = ln_0_w*cur + ln_0_b
cur = ggml_add(ctxL,
cur);
}
-
// add the input
cur = ggml_add(ctxL, cur, inpCA);
{
cur = ggml_norm(ctxL, inpFF);
- // cur = ln_2_g*cur + ln_2_b
- // [ 768, N]
+ // cur = mlp_ln_w*cur + mlp_ln_b
cur = ggml_add(ctxL,
ggml_mul(ctxL,
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
probs_out.resize(N*n_vocab);
memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
- //if (N > 1) {
- // const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
- // printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
- // printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
- //}
+ if (N > 1) {
+ //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
+ //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
+ //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
+ }
ggml_free(ctx0);
t_mel_us = ggml_time_us() - t_start_us;
}
+ // print some info about the processing
+ {
+ printf("\n");
+ if (!vocab.is_multilingual()) {
+ if (params.language != "en" || params.translate) {
+ params.language = "en";
+ params.translate = false;
+ printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
+ }
+ }
+ printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s ...\n",
+ __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
+ g_lang.at(params.language).second.c_str(),
+ params.translate ? "translate" : "transcribe");
+ }
+
+ // the accumulated text context so far
std::vector<whisper_vocab::id> prompt_past = { };
+ // these tokens determine the task that will be performed
+ std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
+ if (vocab.is_multilingual()) {
+ prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
+ if (params.translate) {
+ prompt_init.push_back(vocab.token_translate);
+ } else {
+ prompt_init.push_back(vocab.token_transcribe);
+ }
+ }
+
// main loop
int seek = 0;
while (true) {
std::vector<float> probs;
std::vector<float> logits;
- // SOT
- // ref: https://github.com/openai/whisper/blob/15ab54826343c27cfaf44ce31e9c8fb63d0aa775/whisper/decoding.py#L506-L526
- // TODO: use different initial tokens for different tasks
- std::vector<whisper_vocab::id> prompt = { vocab.token_sot };
+ std::vector<whisper_vocab::id> prompt;
int n_past = 0;
+ // if we have already generated some text, use it as a prompt to condition the next generation
if (prompt_past.size() > 0) {
int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
prompt = { vocab.token_prev };
- prompt.insert(prompt.end(), prompt_past.end() - n_take, prompt_past.end());
- prompt.push_back(vocab.token_sot);
+ prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
prompt_past.clear();
- prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - 1);
+ prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
}
+ prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
+
bool done = false;
int seek_delta = 100*CHUNK_SIZE;
whisper_vocab::id last_id = 0;
n_past += prompt.size();
prompt.clear();
+ // very basic greedy sampling strategy:
+ //
+ // - always take the most probable token
+ // - if we have accumulated more than 'params.max_tokens_per_iter' -> pick most probable timestamp token
+ // and advance the sliding window by that amount
+ // - in the meantime, if we encounter 2 consecutive timestamp tokens, we advance the sliding window too
+ //
+ // more sophisticated sampling strategies could be implemented here, but we keep it simple
+ // feel free to experiment!
+ //
{
// sample next token
const float temp = 1.0; // TODO