});
}
+template<typename T>
+static void arange_kernel(T * dst, const int k, T start, T step,
+ const sycl::nd_item<1> &item_ct1) {
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
+ dst[i] = start + static_cast<T>(i) * step;
+ }
+}
+
template<typename T>
static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
}
+static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ float start, stop, step;
+ memcpy(&start, dst->op_params, sizeof(float));
+ memcpy(&stop, (float *) dst->op_params + 1, sizeof(float));
+ memcpy(&step, (float *) dst->op_params + 2, sizeof(float));
+ dpct::queue_ptr stream = ctx.stream();
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
+ float * dst_ptr = (float *)dst->data;
+ const int k = (int)ggml_nelements(dst);
+ const int num_blocks = ceil_div(k, SYCL_ARANGE_BLOCK_SIZE);
+ stream->parallel_for(
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE),
+ sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE)),
+ [=](sycl::nd_item<1> item_ct1) {
+ arange_kernel(dst_ptr, k, start, step, item_ct1);
+ });
+}
+
} // namespace ggml_sycl_detail
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_quick(ctx, dst);
}
+
+void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
+ scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0);
+ ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst);
+}