if (i0 >= n_dims) {
const int i = row * ne0 + i0;
-
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
-
+ *reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
if (i0 >= n_dims) {
const int i = row * ne0 + i0;
-
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
-
+ *reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
+template <typename T, bool has_ff>
+static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
+ const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
+ const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
+ const float theta_scale, const float * freq_factors, const mrope_sections sections,
+ const sycl::nd_item<3> & item_ct1) {
+ // get index pos
+ const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
+ if (i0 >= ne0) {
+ return;
+ }
+ const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row_dst*ne0 + i0;
+ *reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
+ return;
+ }
+
+ const int row_x = row_dst % ne1;
+ const int channel_x = row_dst / ne1;
+ const int idst = (row_dst * ne0) + (i0 / 2);
+ const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
+
+ const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
+ const int sec_w = sections.v[1] + sections.v[0];
+ const int sector = (i0 / 2) % sect_dims;
+
+
+ float theta_base = 0.0;
+ if (sector < sections.v[0]) {
+ theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
+ }
+ else if (sector >= sections.v[0] && sector < sec_w) {
+ theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
+ }
+ else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
+ theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
+ }
+ else if (sector >= sec_w + sections.v[2]) {
+ theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
+ }
+
+ const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
+ float cos_theta;
+ float sin_theta;
+ rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+ const float x0 = x[ix + 0];
+ const float x1 = x[ix + n_dims/2];
+
+ // store results in dst
+ dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
+ dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
+}
+
+
+
template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
+ const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
+ const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
}
}
+template <typename T>
+static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
+ const size_t s2, const int n_dims, const int nr, const int32_t * pos,
+ const float freq_scale, const float freq_base, const float ext_factor,
+ const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
+ const mrope_sections sections, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
+ const sycl::range<3> grid_dims(1, n_blocks_y, nr);
+ const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
+
+ const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
+ // Add FP16 capability check if T could be sycl::half
+ if constexpr (std::is_same_v<T, sycl::half>) {
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
+ }
+ // launch kernel
+ if (freq_factors == nullptr) {
+ stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
+ rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
+ });
+ } else {
+ stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
+ rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
+ });
+ }
+}
+
+
+
+
// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
+ const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+ const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
+ if (is_mrope) {
+ GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
+ }
+
+ if (is_vision) {
+ GGML_ASSERT(n_dims == ne00/2);
+ }
+
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
} else {
GGML_ABORT("fatal error");
}
+ } else if (is_mrope && !is_vision) {
+ GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
+ if (dst->src[0]->type == GGML_TYPE_F16) {
+ rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
+ s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
+ freq_factors, sections, main_stream);
+ } else if (dst->src[0]->type == GGML_TYPE_F32) {
+ rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
+ nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
+ main_stream);
+ } else {
+ GGML_ABORT("Fatal error: Tensor type unsupported!");
+ }
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {