typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
+static __device__ __forceinline__ float get_alibi_slope(
+ const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
+) {
+ if (max_bias <= 0.0f) {
+ return 1.0f;
+ }
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ return powf(base, exph);
+}
//////////////////////
+#include "common.cuh"
+
+#include <cstdint>
+
#define FATTN_KQ_STRIDE 256
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
+typedef void (* fattn_kernel_t)(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3);
+
template<int D, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
}
+
+template <int D, int parallel_blocks>
+void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
+ const ggml_tensor * Q = dst->src[0];
+ const ggml_tensor * K = dst->src[1];
+ const ggml_tensor * V = dst->src[2];
+
+ const ggml_tensor * mask = dst->src[3];
+
+ ggml_tensor * KQV = dst;
+
+ GGML_ASSERT(Q->type == GGML_TYPE_F32);
+ GGML_ASSERT(K->type == GGML_TYPE_F16);
+ GGML_ASSERT(V->type == GGML_TYPE_F16);
+ GGML_ASSERT(KQV->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
+ GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
+ "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
+
+ GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
+
+ ggml_cuda_pool & pool = ctx.pool();
+ cudaStream_t main_stream = ctx.stream();
+
+ ggml_cuda_pool_alloc<float> dst_tmp(pool);
+ ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
+
+ if (parallel_blocks > 1) {
+ dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
+ dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
+ }
+
+ const dim3 block_dim(WARP_SIZE, nwarps, 1);
+ const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
+ const int shmem = 0;
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
+
+ const uint32_t n_head = Q->ne[2];
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
+ (const char *) Q->data,
+ (const char *) K->data,
+ (const char *) V->data,
+ mask ? ((const char *) mask->data) : nullptr,
+ (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
+ scale, max_bias, m0, m1, n_head_log2,
+ Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
+ K->ne[0], K->ne[1], K->ne[2], K->ne[3],
+ mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
+ Q->nb[1], Q->nb[2], Q->nb[3],
+ K->nb[1], K->nb[2], K->nb[3],
+ KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
+ );
+ CUDA_CHECK(cudaGetLastError());
+
+ if ((parallel_blocks) == 1) {
+ return;
+ }
+
+ const dim3 block_dim_combine(D, 1, 1);
+ const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
+ const int shmem_combine = 0;
+
+ flash_attn_combine_results<D, parallel_blocks>
+ <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
+ (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
+ CUDA_CHECK(cudaGetLastError());
+}
const int stride_KV2 = nb11 / sizeof(half2);
- half slopeh = __float2half(1.0f);
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = blockIdx.y;
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slopeh = __float2half(powf(base, exph));
- }
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
#endif // FP16_AVAILABLE
}
-template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f16(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
-
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
-
- constexpr int nwarps = 8;
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
- const int shmem = 0;
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
-
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>
- <<<blocks_num, block_dim, shmem, main_stream>>> (
- (const char *) Q->data,
- (const char *) K->data,
- (const char *) V->data,
- mask ? ((const char *) mask->data) : nullptr,
- parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- K->nb[1], K->nb[2], K->nb[3],
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
-
- if (parallel_blocks == 1) {
- return;
+template <int cols_per_block, int parallel_blocks>
+void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
+ switch (Q->ne[0]) {
+ case 64: {
+ constexpr int D = 64;
+ constexpr int nwarps = 8;
+ fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 128: {
+ constexpr int D = 128;
+ constexpr int nwarps = 8;
+ fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ default: {
+ GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
+ } break;
}
-
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
-
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
}
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
-
- ggml_tensor * KQV = dst;
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
- GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
const int stride_KV2 = nb11 / sizeof(half2);
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = blockIdx.y;
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = powf(base, exph);
- }
+ const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
}
}
-template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f32(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
-
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
-
- constexpr int nwarps = 8;
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
- const int shmem = 0;
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
-
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>
- <<<blocks_num, block_dim, shmem, main_stream>>> (
- (const char *) Q->data,
- (const char *) K->data,
- (const char *) V->data,
- mask ? ((const char *) mask->data) : nullptr,
- parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- K->nb[1], K->nb[2], K->nb[3],
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
-
- if (parallel_blocks == 1) {
- return;
+template <int cols_per_block, int parallel_blocks>
+void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
+ switch (Q->ne[0]) {
+ case 64: {
+ constexpr int D = 64;
+ constexpr int nwarps = 8;
+ fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 128: {
+ constexpr int D = 128;
+ constexpr int nwarps = 8;
+ fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ default: {
+ GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
+ } break;
}
-
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
-
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
-
- ggml_tensor * KQV = dst;
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
- GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
- half slopeh = __float2half(1.0f);
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = blockIdx.y;
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slopeh = __float2half(powf(base, exph));
- }
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
- if (parallel_blocks != 1 && threadIdx.x < ncols) {
- dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
+ if (parallel_blocks != 1 && tid < ncols) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
-template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
-
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
-
- constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
- const int shmem = 0;
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
-
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
- <<<blocks_num, block_dim, shmem, main_stream>>> (
- (const char *) Q->data,
- (const char *) K->data,
- (const char *) V->data,
- mask ? ((const char *) mask->data) : nullptr,
- parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- K->nb[1], K->nb[2], K->nb[3],
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
-
- if (parallel_blocks == 1) {
- return;
- }
-
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
-
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
-}
-
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
-
ggml_tensor * KQV = dst;
+ ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
- constexpr int cols_per_block = 1;
+ constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 256:
- launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
+ case 64: {
+ constexpr int D = 64;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 128: {
+ constexpr int D = 128;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 256: {
+ constexpr int D = 256;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
default:
GGML_ASSERT(false);
break;
}
}
-void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+template <int cols_per_block, int parallel_blocks>
+void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
+ switch (Q->ne[0]) {
+ case 64: {
+ constexpr int D = 64;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 128: {
+ constexpr int D = 128;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ default: {
+ GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
+ } break;
+ }
+}
- ggml_tensor * KQV = dst;
+void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
- GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
if (Q->ne[1] == 1) {
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return;
}
if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
+ constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
+ constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
+ constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
- constexpr int cols_per_block = 8;
+ constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = blockIdx.y;
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = powf(base, exph);
- }
+ const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
- if (parallel_blocks != 1 && threadIdx.x < ncols) {
- dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
+ if (parallel_blocks != 1 && tid < ncols) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
}
-template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
-
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
-
- constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
- const int shmem = 0;
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
-
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>
- <<<blocks_num, block_dim, shmem, main_stream>>> (
- (const char *) Q->data,
- (const char *) K->data,
- (const char *) V->data,
- mask ? ((const char *) mask->data) : nullptr,
- parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- K->nb[1], K->nb[2], K->nb[3],
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
-
- if (parallel_blocks == 1) {
- return;
+template <int cols_per_block, int parallel_blocks>
+void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
+ switch (Q->ne[0]) {
+ case 64: {
+ constexpr int D = 64;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ case 128: {
+ constexpr int D = 128;
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ } break;
+ default: {
+ GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
+ } break;
}
-
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
-
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
}
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
-
- ggml_tensor * KQV = dst;
-
- GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
if (Q->ne[1] == 1) {
- constexpr int cols_per_block = 1;
+ constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
+ constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
+ constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
+ constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
- constexpr int cols_per_block = 8;
+ constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- case 128:
- launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+ launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
- half slopeh = __float2half(1.0f);
- half2 slope2 = make_half2(1.0f, 1.0f);
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = blockIdx.y;
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slopeh = __float2half(powf(base, exph));
- slope2 = make_half2(slopeh, slopeh);
- }
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
+ const half2 slope2 = make_half2(slopef, slopef);
frag_b Q_b[D/16][ncols/frag_n];
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
-template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
-
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
-
- constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
- const int shmem = 0;
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
-
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
- <<<blocks_num, block_dim, shmem, main_stream>>> (
- (const char *) Q->data,
- (const char *) K->data,
- (const char *) V->data,
- mask ? ((const char *) mask->data) : nullptr,
- (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- K->nb[1], K->nb[2], K->nb[3],
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
-
- if ((parallel_blocks) == 1) {
- return;
- }
-
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
-
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
-}
+template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
+void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
-template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
- const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
- const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
-) {
+ constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
+ const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
if (4*blocks_num_pb1 < 2*nsm) {
- launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
+ constexpr int parallel_blocks = 4;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
return;
}
if (2*blocks_num_pb1 < 2*nsm) {
- launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
+ constexpr int parallel_blocks = 2;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
return;
}
- launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
+ constexpr int parallel_blocks = 1;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
-
- const ggml_tensor * mask = dst->src[3];
-
- ggml_tensor * KQV = dst;
-
- GGML_ASSERT(Q->type == GGML_TYPE_F32);
- GGML_ASSERT(K->type == GGML_TYPE_F16);
- GGML_ASSERT(V->type == GGML_TYPE_F16);
- GGML_ASSERT(KQV->type == GGML_TYPE_F32);
-
- GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
- GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
- "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
-
- GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
ggml_cuda_set_device(ctx.device);
-
- const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
- const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
-
+ const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
// On AMD the tile kernels perform poorly, use the vec kernel instead:
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
break;
default:
GGML_ASSERT(false);
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
break;
// case 256:
- // launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ // launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
// break;
default:
GGML_ASSERT(false);
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
+ launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
+#include "common.cuh"
#include "softmax.cuh"
template <typename T>
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const int h = rowx/nrows_y; // head index
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = powf(base, exph);
- }
+ const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication