]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
Introduce C-style API (#370)
authorGeorgi Gerganov <redacted>
Wed, 22 Mar 2023 05:32:36 +0000 (07:32 +0200)
committerGitHub <redacted>
Wed, 22 Mar 2023 05:32:36 +0000 (07:32 +0200)
* Major refactoring - introduce C-style API

* Clean up

* Add <cassert>

* Add <iterator>

* Add <algorithm> ....

* Fix timing reporting and accumulation

* Measure eval time only for single-token calls

* Change llama_tokenize return meaning

14 files changed:
CMakeLists.txt
Makefile
convert-pth-to-ggml.py
ggml.c
ggml.h
llama.cpp [new file with mode: 0644]
llama.h [new file with mode: 0644]
main.cpp
models/ggml-vocab.bin
quantize.cpp
tests/CMakeLists.txt
tests/test-tokenizer-0.cpp
utils.cpp
utils.h

index bf0e77b4a9b9de382880be8dedcd555d74121680..400cecf9c3c2da63473e1030820c3f06f9a1de70 100644 (file)
@@ -207,15 +207,10 @@ else()
     message(STATUS "Unknown architecture")
 endif()
 
-
 #
-# Build library
+# Build libraries
 #
 
-add_executable(llama main.cpp)
-
-add_executable(quantize quantize.cpp)
-
 add_library(utils OBJECT
             utils.cpp
             utils.h)
@@ -229,14 +224,24 @@ add_library(ggml OBJECT
 
 target_include_directories(ggml PUBLIC .)
 target_compile_features(ggml PUBLIC c_std_11) # don't bump
+target_link_libraries(ggml PRIVATE Threads::Threads ${LLAMA_EXTRA_LIBS})
+
+add_library(llama OBJECT
+            llama.cpp
+            llama.h)
+
+target_include_directories(llama PUBLIC .)
+target_compile_features(llama PUBLIC cxx_std_11) # don't bump
 
 #
-# Linking
+# Executables
 #
 
-target_link_libraries(ggml PRIVATE Threads::Threads ${LLAMA_EXTRA_LIBS})
-target_link_libraries(llama PRIVATE ggml utils)
-target_link_libraries(quantize PRIVATE ggml utils)
+add_executable(main main.cpp)
+target_link_libraries(main PRIVATE llama ggml utils)
+
+add_executable(quantize quantize.cpp)
+target_link_libraries(quantize PRIVATE llama ggml utils)
 
 #
 # programs, examples and tests
index 07127547075c2f9e2393a7f059bc07ed80329d73..edb0c64c82361aa357c76e2d0b909114f4ffe515 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -220,18 +220,21 @@ default: main quantize
 ggml.o: ggml.c ggml.h
        $(CC)  $(CFLAGS)   -c ggml.c -o ggml.o
 
+llama.o: llama.cpp llama.h
+       $(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
+
 utils.o: utils.cpp utils.h
        $(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o
 
 clean:
        rm -f *.o main quantize
 
-main: main.cpp ggml.o utils.o
-       $(CXX) $(CXXFLAGS) main.cpp ggml.o utils.o -o main $(LDFLAGS)
+main: main.cpp ggml.o llama.o utils.o
+       $(CXX) $(CXXFLAGS) main.cpp ggml.o llama.o utils.o -o main $(LDFLAGS)
        @echo "\x1b[36mrun ./main -h for help\x1b[0m"
 
-quantize: quantize.cpp ggml.o utils.o
-       $(CXX) $(CXXFLAGS) quantize.cpp ggml.o utils.o -o quantize $(LDFLAGS)
+quantize: quantize.cpp ggml.o llama.o utils.o
+       $(CXX) $(CXXFLAGS) quantize.cpp ggml.o llama.o utils.o -o quantize $(LDFLAGS)
 
 #
 # Tests
index db5b00fec468668fd829254364c5a613178319ac..f0f6b0ec47832a7638f7876cb59c7b2a64160d4b 100644 (file)
@@ -148,7 +148,7 @@ def main():
         model = torch.load(fname_model, map_location="cpu")
 
         with open(fname_out, "wb") as fout:
-            fout.write(struct.pack("i", hparams["vocab_size"]))
+            write_header(fout, hparams, ftype)
             write_tokens(fout, tokenizer)
 
         del model
diff --git a/ggml.c b/ggml.c
index 8daac351026c0ef37638c51f76b62db808e64d11..d005445771f3cf8732cb87435e1d88b372818422 100644 (file)
--- a/ggml.c
+++ b/ggml.c
@@ -10702,6 +10702,127 @@ enum ggml_opt_result ggml_opt(
 
 ////////////////////////////////////////////////////////////////////////////////
 
+size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
+    const int nb = k / qk;
+    const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
+    const size_t row_size = nb*bs;
+
+    assert(k % qk == 0);
+
+    const size_t pp_size = qk / 2;
+    uint8_t * pp = (uint8_t *) alloca(pp_size);
+
+    char * pdst = (char *) dst;
+
+    for (int j = 0; j < n; j += k) {
+        uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
+        uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
+
+        for (int i = 0; i < nb; i++) {
+            float amax = 0.0f; // absolute max
+
+            {
+                for (int l = 0; l < qk; l++) {
+                    const float v = src[j + i*qk + l];
+                    amax = MAX(amax, fabsf(v));
+                }
+
+                const float d = amax / ((1 << 3) - 1);
+                const float id = d ? 1.0f/d : 0.0f;
+
+                *(float *) pd = d;
+                pd += bs;
+
+                for (int l = 0; l < qk; l += 2) {
+                    const float v0 = (src[j + i*qk + l + 0])*id;
+                    const float v1 = (src[j + i*qk + l + 1])*id;
+
+                    const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
+                    const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
+
+                    assert(vi0 >= 0 && vi0 < 16);
+                    assert(vi1 >= 0 && vi1 < 16);
+
+                    hist[vi0]++;
+                    hist[vi1]++;
+
+                    pp[l/2] = vi0 | (vi1 << 4);
+                }
+
+                memcpy(pb, pp, pp_size);
+                pb += bs;
+            }
+        }
+    }
+
+    return (n/k)*row_size;
+}
+
+size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
+    const int nb = k / qk;
+    const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
+    const size_t row_size = nb*bs;
+
+    assert(k % qk == 0);
+
+    const size_t pp_size = qk / 2;
+    uint8_t * pp = (uint8_t *) alloca(pp_size);
+
+    char * pdst = (char *) dst;
+
+    for (int j = 0; j < n; j += k) {
+        uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
+        uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs +   sizeof(float));
+        uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
+
+        //printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
+
+        for (int i = 0; i < nb; i++) {
+            float min = FLT_MAX;
+            float max = -FLT_MAX;
+
+            {
+                for (int l = 0; l < qk; l++) {
+                    const float v = src[j + i*qk + l];
+                    if (v < min) min = v;
+                    if (v > max) max = v;
+                }
+
+                const float d = (max - min) / ((1 << 4) - 1);
+                const float id = d ? 1.0f/d : 0.0f;
+
+                *(float *) pd = d;
+                *(float *) pm = min;
+                pd += bs;
+                pm += bs;
+
+                for (int l = 0; l < qk; l += 2) {
+                    const float v0 = (src[j + i*qk + l + 0] - min)*id;
+                    const float v1 = (src[j + i*qk + l + 1] - min)*id;
+
+                    const uint8_t vi0 = round(v0);
+                    const uint8_t vi1 = round(v1);
+
+                    assert(vi0 >= 0 && vi0 < 16);
+                    assert(vi1 >= 0 && vi1 < 16);
+
+                    hist[vi0]++;
+                    hist[vi1]++;
+
+                    pp[l/2] = vi0 | (vi1 << 4);
+                }
+
+                memcpy(pb, pp, pp_size);
+                pb += bs;
+            }
+        }
+    }
+
+    return (n/k)*row_size;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
 int ggml_cpu_has_avx(void) {
 #if defined(__AVX__)
     return 1;
diff --git a/ggml.h b/ggml.h
index bac4fe65c7ad5122551c01e011cabf053b349819..48b6cc028f901db3e5430ba60561c4ecd451884c 100644 (file)
--- a/ggml.h
+++ b/ggml.h
@@ -741,6 +741,13 @@ enum ggml_opt_result ggml_opt(
         struct ggml_opt_params params,
         struct ggml_tensor * f);
 
+//
+// quantization
+//
+
+size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
+size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
+
 //
 // system info
 //
diff --git a/llama.cpp b/llama.cpp
new file mode 100644 (file)
index 0000000..08dfcb3
--- /dev/null
+++ b/llama.cpp
@@ -0,0 +1,1565 @@
+#include "llama.h"
+
+#include "ggml.h"
+
+#include <cinttypes>
+#include <fstream>
+#include <random>
+#include <unordered_map>
+#include <queue>
+#include <regex>
+#include <cassert>
+
+// determine number of model parts based on the dimension
+static const std::unordered_map<int, int> LLAMA_N_PARTS = {
+    { 4096, 1 },
+    { 5120, 2 },
+    { 6656, 4 },
+    { 8192, 8 },
+};
+
+// default hparams (LLaMA 7B)
+struct llama_hparams {
+    int32_t n_vocab = 32000;
+    int32_t n_ctx   = 512;   // this is provided as user input?
+    int32_t n_embd  = 4096;
+    int32_t n_mult  = 256;
+    int32_t n_head  = 32;
+    int32_t n_layer = 32;
+    int32_t n_rot   = 64;
+    int32_t f16     = 1;
+};
+
+struct llama_layer {
+    // normalization
+    struct ggml_tensor * attention_norm;
+
+    // attention
+    struct ggml_tensor * wq;
+    struct ggml_tensor * wk;
+    struct ggml_tensor * wv;
+    struct ggml_tensor * wo;
+
+    // normalization
+    struct ggml_tensor * ffn_norm;
+
+    // ff
+    struct ggml_tensor * w1;
+    struct ggml_tensor * w2;
+    struct ggml_tensor * w3;
+};
+
+struct llama_model {
+    llama_hparams hparams;
+
+    struct ggml_tensor * tok_embeddings;
+
+    struct ggml_tensor * norm;
+    struct ggml_tensor * output;
+
+    std::vector<llama_layer> layers;
+
+    // key + value memory
+    struct ggml_tensor * memory_k;
+    struct ggml_tensor * memory_v;
+
+    //
+    struct ggml_context * ctx;
+    std::unordered_map<std::string, struct ggml_tensor *> tensors;
+};
+
+struct llama_vocab {
+    using id    = int32_t;
+    using token = std::string;
+
+    struct token_score {
+        token tok;
+        float score;
+    };
+
+    std::unordered_map<token, id> token_to_id;
+    std::vector<token_score> id_to_token;
+};
+
+struct llama_context {
+    std::mt19937 rng;
+
+    int64_t t_load_us = 0;
+    int64_t t_start_us = 0;
+
+    int64_t t_sample_us = 0;
+    int64_t t_eval_us   = 0;
+
+    int32_t n_sample = 0; // number of tokens sampled
+    int32_t n_eval   = 0; // number of eval calls
+
+    llama_model model;
+    llama_vocab vocab;
+
+    size_t mem_per_token = 0;
+
+    // decode output (2-dimensional array: [n_tokens][n_vocab])
+    std::vector<float> logits;
+    bool logits_all = false;
+};
+
+struct llama_context_params llama_context_default_params() {
+    struct llama_context_params result = {
+        /*.n_ctx      =*/ 512,
+        /*.n_parts    =*/ -1,
+        /*.seed       =*/ 0,
+        /*.f16_kv     =*/ false,
+        /*.logits_all =*/ false,
+        /*.vocab_only =*/ false,
+    };
+
+    return result;
+}
+
+//
+// model loading
+//
+
+static bool llama_model_load(
+        const std::string & fname,
+        llama_context & lctx,
+        int n_ctx,
+        int n_parts,
+        ggml_type memory_type,
+        bool vocab_only) {
+    fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
+
+    const int64_t t_start_us = ggml_time_us();
+
+    lctx.t_start_us = t_start_us;
+
+    std::vector<char> f_buf(1024*1024);
+
+    auto & model = lctx.model;
+    auto & vocab = lctx.vocab;
+
+    auto fin = std::ifstream(fname, std::ios::binary);
+    fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
+    if (!fin) {
+        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+        return false;
+    }
+
+    // verify magic
+    {
+        uint32_t magic;
+        fin.read((char *) &magic, sizeof(magic));
+        if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
+            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
+                    __func__, fname.c_str());
+            return false;
+        }
+        if (magic != LLAMA_FILE_MAGIC) {
+            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+            return false;
+        }
+
+        uint32_t format_version;
+        fin.read((char *) &format_version, sizeof(format_version));
+
+        if (format_version != LLAMA_FILE_VERSION) {
+            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
+                    __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
+            return false;
+        }
+    }
+
+    int n_ff = 0;
+
+    // load hparams
+    {
+        auto & hparams = model.hparams;
+
+        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+        //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
+        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
+        fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
+        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
+        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+        fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
+        fin.read((char *) &hparams.f16,     sizeof(hparams.f16));
+
+        hparams.n_ctx = n_ctx;
+
+        n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
+
+        if (n_parts < 1) {
+            n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
+        }
+
+        // temp warning to tell the user to use "--n_parts"
+        if (hparams.f16 == 4 && n_parts != 1) {
+            fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
+            fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
+        }
+
+        fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+        fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
+        fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
+        fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
+        fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
+        fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
+        fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
+        fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
+        fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
+        fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
+    }
+
+    // load vocab
+    {
+        std::string word;
+        vocab.id_to_token.resize(model.hparams.n_vocab);
+        std::vector<char> tmp(64);
+
+        for (int i = 0; i < model.hparams.n_vocab; i++) {
+            uint32_t len;
+            fin.read((char *) &len, sizeof(len));
+
+            word.resize(len);
+            if (len > 0) {
+                tmp.resize(len);
+                fin.read(tmp.data(), len);
+                word.assign(tmp.data(), len);
+            } else {
+                word.clear();
+            }
+
+            float score;
+            fin.read((char *) &score, sizeof(score));
+
+            vocab.token_to_id[word] = i;
+
+            auto &tok_score = vocab.id_to_token[i];
+            tok_score.tok = word;
+            tok_score.score = score;
+        }
+    }
+
+    if (vocab_only) {
+        return true;
+    }
+
+    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
+    // in order to save memory and also to speed up the computation
+    // wtype is for per-layer weights, while vtype is for other weights
+    ggml_type wtype, vtype;
+    switch (model.hparams.f16) {
+        case 0: wtype = vtype = GGML_TYPE_F32;  break;
+        case 1: wtype = vtype = GGML_TYPE_F16;  break;
+        case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
+        case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
+        case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
+        default:
+                {
+                    fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
+                            __func__, fname.c_str(), model.hparams.f16);
+                    return false;
+                }
+    }
+
+    auto & ctx = model.ctx;
+
+    size_t ctx_size = 0;
+
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_embd  = hparams.n_embd;
+        const int n_layer = hparams.n_layer;
+        const int n_ctx   = hparams.n_ctx;
+        const int n_vocab = hparams.n_vocab;
+
+        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
+
+        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
+
+        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
+
+        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
+
+        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
+        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
+        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
+        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
+
+        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
+
+        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
+        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
+        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
+
+        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
+        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
+
+        ctx_size += (5 + 10*n_layer)*256; // object overhead
+
+        fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+    }
+
+    // create the ggml context
+    {
+        struct ggml_init_params params = {
+            /*.mem_size   =*/ ctx_size,
+            /*.mem_buffer =*/ NULL,
+        };
+
+        model.ctx = ggml_init(params);
+        if (!model.ctx) {
+            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+            return false;
+        }
+    }
+
+    // prepare memory for the weights
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_embd  = hparams.n_embd;
+        const int n_layer = hparams.n_layer;
+        const int n_vocab = hparams.n_vocab;
+
+        model.layers.resize(n_layer);
+
+        model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+
+        model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+        model.output = ggml_new_tensor_2d(ctx, vtype,         n_embd, n_vocab);
+
+        // map by name
+        model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
+
+        model.tensors["norm.weight"]   = model.norm;
+        model.tensors["output.weight"] = model.output;
+
+        for (int i = 0; i < n_layer; ++i) {
+            auto & layer = model.layers[i];
+
+            layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+            layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+            layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+            layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+            layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+
+            layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+            layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
+            layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
+            layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
+
+            // map by name
+            model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
+
+            model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
+            model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
+            model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
+            model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
+
+            model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
+
+            model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
+            model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
+            model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
+        }
+    }
+
+    // key + value memory
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_embd  = hparams.n_embd;
+        const int n_layer = hparams.n_layer;
+        const int n_ctx   = hparams.n_ctx;
+
+        const int n_mem      = n_layer*n_ctx;
+        const int n_elements = n_embd*n_mem;
+
+        model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
+        model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
+
+        const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
+
+        fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
+    }
+
+    const size_t file_offset = fin.tellg();
+
+    fin.close();
+
+    std::vector<uint8_t> tmp;
+
+    for (int i = 0; i < n_parts; ++i) {
+        const int part_id = i;
+        //const int part_id = n_parts - i - 1;
+
+        std::string fname_part = fname;
+        if (i > 0) {
+            fname_part += "." + std::to_string(i);
+        }
+
+        fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
+
+        fin = std::ifstream(fname_part, std::ios::binary);
+        fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
+        fin.seekg(file_offset);
+
+        // load weights
+        {
+            int n_tensors = 0;
+            size_t total_size = 0;
+
+            fprintf(stderr, "%s: ", __func__);
+
+            while (true) {
+                int32_t n_dims;
+                int32_t length;
+                int32_t ftype;
+
+                fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+                fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+                fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
+
+                if (fin.eof()) {
+                    break;
+                }
+
+                int32_t nelements = 1;
+                int32_t ne[2] = { 1, 1 };
+                for (int i = 0; i < n_dims; ++i) {
+                    fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+                    nelements *= ne[i];
+                }
+
+                std::string name(length, 0);
+                fin.read(&name[0], length);
+
+                if (model.tensors.find(name.data()) == model.tensors.end()) {
+                    fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+                    return false;
+                }
+
+                // split_type = 0: split by columns
+                // split_type = 1: split by rows
+                int split_type = 0;
+
+                // split_type = 0:
+                // regex:
+                //   - tok_embeddings.*
+                //   - layers.*.attention.wo.weight
+                //   - layers.*.feed_forward.w2.weight
+
+                // split_type = 1:
+                // regex:
+                //   - output.*
+                //   - layers.*.attention.wq.weight
+                //   - layers.*.attention.wk.weight
+                //   - layers.*.attention.wv.weight
+                //   - layers.*.feed_forward.w1.weight
+                //   - layers.*.feed_forward.w3.weight
+                if (name.find("tok_embeddings") != std::string::npos) {
+                    split_type = 0;
+                } else if (name.find("layers") != std::string::npos) {
+                    if (name.find("attention.wo.weight") != std::string::npos) {
+                        split_type = 0;
+                    } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
+                        split_type = 0;
+                    } else {
+                        split_type = 1;
+                    }
+                } else if (name.find("output") != std::string::npos) {
+                    split_type = 1;
+                }
+
+                auto tensor = model.tensors[name.data()];
+
+                if (n_dims == 1) {
+                    if (ggml_nelements(tensor) != nelements) {
+                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+                        return false;
+                    }
+                } else {
+                    if (ggml_nelements(tensor)/n_parts != nelements) {
+                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+                        return false;
+                    }
+                }
+
+                if (n_dims == 1) {
+                    if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
+                        fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+                                __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
+                        return false;
+                    }
+                } else {
+                    if (split_type == 0) {
+                        if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
+                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+                                    __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
+                            return false;
+                        }
+                    } else {
+                        if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
+                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+                                    __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
+                            return false;
+                        }
+                    }
+                }
+
+                if (0) {
+                    static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
+                    fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
+                }
+
+                size_t bpe = 0;
+
+                switch (ftype) {
+                    case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
+                    case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
+                    case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
+                    case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
+                    default:
+                            {
+                                fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
+                                return false;
+                            }
+                };
+
+                if (n_dims == 1 || n_parts == 1) {
+                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
+                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+                                __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+                        return false;
+                    }
+
+                    if (part_id == 0) {
+                        fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+                    } else {
+                        fin.seekg(ggml_nbytes(tensor), std::ios::cur);
+                    }
+
+                    total_size += ggml_nbytes(tensor);
+                } else {
+                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
+                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+                                __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
+                        return false;
+                    }
+
+                    if (split_type == 0) {
+                        const int np0 = ne[0];
+
+                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+                        assert(row_size == tensor->nb[1]);
+
+                        for (int i1 = 0; i1 < ne[1]; ++i1) {
+                            const size_t offset_row = i1*row_size;
+                            const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+                            fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
+                        }
+                    } else {
+                        const int np1 = ne[1];
+
+                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+
+                        for (int i1 = 0; i1 < ne[1]; ++i1) {
+                            const size_t offset_row = (i1 + part_id*np1)*row_size;
+                            fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
+                        }
+                    }
+
+                    total_size += ggml_nbytes(tensor)/n_parts;
+                }
+
+                //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+                if (++n_tensors % 8 == 0) {
+                    fprintf(stderr, ".");
+                    fflush(stderr);
+                }
+            }
+
+            fprintf(stderr, " done\n");
+
+            fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
+        }
+
+        fin.close();
+    }
+
+    lctx.logits.reserve(lctx.model.hparams.n_ctx);
+
+    lctx.t_load_us = ggml_time_us() - t_start_us;
+
+    return true;
+}
+
+// evaluate the transformer
+//
+//   - lctx:      llama context
+//   - tokens:    new batch of tokens to process
+//   - n_past:    the context size so far
+//   - n_threads: number of threads to use
+//
+static bool llama_eval_internal(
+        llama_context & lctx,
+    const llama_token * tokens,
+            const int   n_tokens,
+            const int   n_past,
+            const int   n_threads) {
+    const int64_t t_start_us = ggml_time_us();
+
+    const int N = n_tokens;
+
+    const auto & model   = lctx.model;
+    const auto & hparams = model.hparams;
+
+    const int n_embd  = hparams.n_embd;
+    const int n_layer = hparams.n_layer;
+    const int n_ctx   = hparams.n_ctx;
+    const int n_head  = hparams.n_head;
+    const int n_vocab = hparams.n_vocab;
+    const int n_rot   = hparams.n_embd/hparams.n_head;
+
+    auto & mem_per_token = lctx.mem_per_token;
+
+    // TODO: fix this hardcoded size
+    static size_t buf_size = 512u*1024*1024;
+    static void * buf = malloc(buf_size);
+
+    if (mem_per_token > 0 && mem_per_token*N > buf_size) {
+        const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
+        //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
+
+        // reallocate
+        buf_size = buf_size_new;
+        buf = realloc(buf, buf_size);
+        if (buf == nullptr) {
+            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
+            return false;
+        }
+    }
+
+    struct ggml_init_params params = {
+        /*.mem_size   =*/ buf_size,
+        /*.mem_buffer =*/ buf,
+    };
+
+    struct ggml_context * ctx0 = ggml_init(params);
+    ggml_cgraph gf = {};
+    gf.n_threads = n_threads;
+
+    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+    memcpy(embd->data, tokens, N*ggml_element_size(embd));
+
+    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
+
+    for (int il = 0; il < n_layer; ++il) {
+        struct ggml_tensor * inpSA = inpL;
+
+        struct ggml_tensor * cur;
+
+        // norm
+        {
+            cur = ggml_rms_norm(ctx0, inpL);
+
+            // cur = attention_norm*cur
+            cur = ggml_mul(ctx0,
+                        ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
+                        cur);
+        }
+
+        // self-attention
+        {
+            struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+            struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+            struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+
+            // store key and value to memory
+            if (N >= 1) {
+                struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
+                struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
+
+                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
+                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
+            }
+
+            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
+            struct ggml_tensor * Q =
+                ggml_permute(ctx0,
+                        ggml_rope(ctx0,
+                            ggml_cpy(ctx0,
+                                Qcur,
+                                ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
+                            n_past, n_rot, 0),
+                        0, 2, 1, 3);
+
+            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
+            struct ggml_tensor * K =
+                ggml_permute(ctx0,
+                        ggml_rope(ctx0,
+                            ggml_reshape_3d(ctx0,
+                                ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
+                                n_embd/n_head, n_head, n_past + N),
+                            n_past, n_rot, 1),
+                        0, 2, 1, 3);
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+            // KQ_scaled = KQ / sqrt(n_embd/n_head)
+            struct ggml_tensor * KQ_scaled =
+                ggml_scale(ctx0,
+                        KQ,
+                        ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
+                        );
+
+            // KQ_masked = mask_past(KQ_scaled)
+            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+            // KQ = soft_max(KQ_masked)
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
+            struct ggml_tensor * V_trans =
+                ggml_permute(ctx0,
+                        ggml_reshape_3d(ctx0,
+                            ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
+                            n_embd/n_head, n_head, n_past + N),
+                        1, 2, 0, 3);
+
+            // KQV = transpose(V) * KQ_soft_max
+            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
+
+            // KQV_merged = KQV.permute(0, 2, 1, 3)
+            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+
+            // cur = KQV_merged.contiguous().view(n_embd, N)
+            cur = ggml_cpy(ctx0,
+                    KQV_merged,
+                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+            // projection (no bias)
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].wo,
+                    cur);
+        }
+
+        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+
+        // feed-forward network
+        {
+            // norm
+            {
+                cur = ggml_rms_norm(ctx0, inpFF);
+
+                // cur = ffn_norm*cur
+                cur = ggml_mul(ctx0,
+                        ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
+                        cur);
+            }
+
+            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+                    model.layers[il].w3,
+                    cur);
+
+
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].w1,
+                    cur);
+
+            // SILU activation
+            cur = ggml_silu(ctx0, cur);
+
+            cur = ggml_mul(ctx0, cur, tmp);
+
+            cur = ggml_mul_mat(ctx0,
+                    model.layers[il].w2,
+                    cur);
+        }
+
+        cur  = ggml_add(ctx0, cur, inpFF);
+
+        // input for next layer
+        inpL = cur;
+    }
+
+    // norm
+    {
+        inpL = ggml_rms_norm(ctx0, inpL);
+
+        // inpL = norm*inpL
+        inpL = ggml_mul(ctx0,
+                    ggml_repeat(ctx0, model.norm, inpL),
+                    inpL);
+    }
+
+    // lm_head
+    {
+        inpL = ggml_mul_mat(ctx0, model.output, inpL);
+    }
+
+    // logits -> probs
+    //inpL = ggml_soft_max(ctx0, inpL);
+
+    // run the computation
+    ggml_build_forward_expand(&gf, inpL);
+    ggml_graph_compute       (ctx0, &gf);
+
+    //if (n_past%100 == 0) {
+    //    ggml_graph_print   (&gf);
+    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
+    //}
+
+    //embd_w.resize(n_vocab*N);
+    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+
+    auto & logits_out = lctx.logits;
+
+    if (lctx.logits_all) {
+        logits_out.resize(n_vocab * N);
+        memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+    } else {
+        // return result for just the last token
+        logits_out.resize(n_vocab);
+        memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
+    }
+
+    if (mem_per_token == 0) {
+        mem_per_token = ggml_used_mem(ctx0)/N;
+    }
+    //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
+
+    ggml_free(ctx0);
+
+    // measure the performance only for the single-token evals
+    if (N == 1) {
+        lctx.t_eval_us += ggml_time_us() - t_start_us;
+        lctx.n_eval++;
+    }
+
+    return true;
+}
+
+//
+// tokenizer
+//
+
+static size_t utf8_len(char src) {
+    const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
+    uint8_t highbits = static_cast<uint8_t>(src) >> 4;
+    return lookup[highbits];
+}
+
+struct llama_sp_symbol {
+    using index = int;
+    index prev;
+    index next;
+    const char * text;
+    size_t n;
+};
+
+struct llama_sp_bigram {
+    struct comparator {
+        bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
+            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
+        }
+    };
+    using queue_storage = std::vector<llama_sp_bigram>;
+    using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
+    llama_sp_symbol::index left;
+    llama_sp_symbol::index right;
+    float score;
+    size_t size;
+};
+
+// original implementation:
+// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
+struct llama_tokenizer {
+    llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
+
+    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+        // split string into utf8 chars
+        int index = 0;
+        size_t offs = 0;
+        while (offs < text.size()) {
+            llama_sp_symbol sym;
+            size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
+            sym.text = text.c_str() + offs;
+            sym.n = char_len;
+            offs += char_len;
+            sym.prev = index - 1;
+            sym.next = offs == text.size() ? -1 : index + 1;
+            index++;
+            symbols_.emplace_back(std::move(sym));
+        }
+
+        // seed the work queue with all possible 2-character tokens.
+        for (size_t i = 1; i < symbols_.size(); ++i) {
+            try_add_bigram(i - 1, i);
+        }
+
+        // keep substituting the highest frequency pairs for as long as we can.
+        while (!work_queue_.empty()) {
+            auto bigram = work_queue_.top();
+            work_queue_.pop();
+
+            auto & left_sym = symbols_[bigram.left];
+            auto & right_sym = symbols_[bigram.right];
+
+            // if one of the symbols already got merged, skip it.
+            if (left_sym.n == 0 || right_sym.n == 0 ||
+                left_sym.n + right_sym.n != bigram.size) {
+                continue;
+            }
+
+            // merge the right sym into the left one
+            left_sym.n += right_sym.n;
+            right_sym.n = 0;
+
+            //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
+
+            // remove the right sym from the chain
+            left_sym.next = right_sym.next;
+            if (right_sym.next >= 0) {
+                symbols_[right_sym.next].prev = bigram.left;
+            }
+
+            // find more substitutions
+            try_add_bigram(left_sym.prev, bigram.left);
+            try_add_bigram(bigram.left, left_sym.next);
+        }
+
+        for (int i = 0; i != -1; i = symbols_[i].next) {
+            auto & symbol = symbols_[i];
+            auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
+
+            if (token == vocab_.token_to_id.end()) {
+                // output any symbols that did not form tokens as bytes.
+                for (int j = 0; j < (int) symbol.n; ++j) {
+                    llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
+                    output.push_back(token_id);
+                }
+            } else {
+                output.push_back((*token).second);
+            }
+        }
+    }
+
+private:
+    void try_add_bigram(int left, int right) {
+        if (left == -1 || right == -1) {
+            return;
+        }
+
+        const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
+        auto token = vocab_.token_to_id.find(text);
+
+        if (token == vocab_.token_to_id.end()) {
+            return;
+        }
+
+        if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
+            return;
+        }
+
+        const auto &tok_score = vocab_.id_to_token[(*token).second];
+
+        llama_sp_bigram bigram;
+        bigram.left = left;
+        bigram.right = right;
+        bigram.score = tok_score.score;
+        bigram.size = text.size();
+        work_queue_.push(bigram);
+    }
+
+    const llama_vocab & vocab_;
+    std::vector<llama_sp_symbol> symbols_;
+    llama_sp_bigram::queue work_queue_;
+};
+
+static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
+    llama_tokenizer tokenizer(vocab);
+    std::vector<llama_vocab::id> output;
+
+    if (text.size() == 0) {
+        return output;
+    }
+
+    if (bos) {
+        output.push_back(1);
+    }
+
+    tokenizer.tokenize(text, output);
+    return output;
+}
+
+//
+// sampling
+//
+
+static void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
+    // find the top k tokens
+    std::partial_sort(
+            logits_id.begin(),
+            logits_id.begin() + top_k, logits_id.end(),
+            [](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
+        return a.first > b.first;
+    });
+
+    logits_id.resize(top_k);
+}
+
+static llama_vocab::id llama_sample_top_p_top_k(
+        llama_context & lctx,
+        const std::vector<llama_vocab::id> & last_n_tokens,
+        int top_k,
+        double top_p,
+        double temp,
+        double repeat_penalty) {
+    auto & rng = lctx.rng;
+
+    const auto & vocab = lctx.vocab;
+    const auto & logits = lctx.logits;
+
+    int n_logits = vocab.id_to_token.size();
+
+    std::vector<std::pair<double, llama_vocab::id>> logits_id;
+    logits_id.reserve(n_logits);
+
+    {
+        const double scale = 1.0/temp;
+        for (int i = 0; i < n_logits; ++i) {
+            // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
+            // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
+            if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
+                // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
+                if (logits[i] < 0.0) {
+                    logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
+                } else {
+                    logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
+                }
+            } else {
+                logits_id.push_back(std::make_pair(logits[i]*scale, i));
+            }
+        }
+    }
+
+    sample_top_k(logits_id, top_k);
+
+    double maxl = -std::numeric_limits<double>::infinity();
+    for (const auto & kv : logits_id) {
+        maxl = std::max(maxl, kv.first);
+    }
+
+    // compute probs for the top k tokens
+    std::vector<double> probs;
+    probs.reserve(logits_id.size());
+
+    double sum = 0.0;
+    for (const auto & kv : logits_id) {
+        double p = exp(kv.first - maxl);
+        probs.push_back(p);
+        sum += p;
+    }
+
+    // normalize the probs
+    for (auto & p : probs) {
+        p /= sum;
+    }
+
+    if (top_p < 1.0f) {
+        double cumsum = 0.0f;
+        for (int i = 0; i < (int) probs.size(); i++) {
+            cumsum += probs[i];
+            if (cumsum >= top_p) {
+                probs.resize(i + 1);
+                logits_id.resize(i + 1);
+                break;
+            }
+        }
+
+        cumsum = 1.0/cumsum;
+        for (int i = 0; i < (int) probs.size(); i++) {
+            probs[i] *= cumsum;
+        }
+    }
+
+    //printf("\n");
+    //for (int i = 0; i < (int) 10; i++) {
+    //    printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
+    //}
+    //printf("\n\n");
+    //exit(0);
+
+    std::discrete_distribution<> dist(probs.begin(), probs.end());
+    int idx = dist(rng);
+
+    return logits_id[idx].second;
+}
+
+//
+// quantization
+//
+
+// TODO: reuse code from the llama_model_load() somehow
+bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype, int qk) {
+    ggml_type type = GGML_TYPE_Q4_1;
+
+    switch (itype) {
+        case 2: type = GGML_TYPE_Q4_0; break;
+        case 3: type = GGML_TYPE_Q4_1; break;
+        default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
+    };
+
+    if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
+        fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
+        return false;
+    }
+
+    llama_vocab vocab;
+
+    printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
+
+    auto finp = std::ifstream(fname_inp, std::ios::binary);
+    if (!finp) {
+        fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
+        return false;
+    }
+
+    auto fout = std::ofstream(fname_out, std::ios::binary);
+    if (!fout) {
+        fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
+        return false;
+    }
+
+    // verify magic
+    {
+        uint32_t magic;
+        finp.read((char *) &magic, sizeof(magic));
+        if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
+            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
+                    __func__, fname_inp.c_str());
+            return false;
+        }
+        if (magic != LLAMA_FILE_MAGIC) {
+            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
+            return false;
+        }
+
+        fout.write((char *) &magic, sizeof(magic));
+
+        uint32_t format_version;
+        finp.read((char *) &format_version, sizeof(format_version));
+
+        if (format_version != LLAMA_FILE_VERSION) {
+            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
+                    __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
+            return false;
+        }
+
+        fout.write((char *) &format_version, sizeof(format_version));
+    }
+
+    llama_hparams hparams;
+
+    // load hparams
+    {
+        finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+        //finp.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
+        finp.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
+        finp.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
+        finp.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
+        finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+        finp.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
+        finp.read((char *) &hparams.f16,     sizeof(hparams.f16));
+
+        printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+        printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
+        printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
+        printf("%s: n_mult  = %d\n", __func__, hparams.n_mult);
+        printf("%s: n_head  = %d\n", __func__, hparams.n_head);
+        printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
+        printf("%s: f16     = %d\n", __func__, hparams.f16);
+
+        fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+        //fout.write((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
+        fout.write((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
+        fout.write((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
+        fout.write((char *) &hparams.n_head,  sizeof(hparams.n_head));
+        fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+        fout.write((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
+        fout.write((char *) &itype,           sizeof(hparams.f16));
+    }
+
+    // load vocab
+    {
+        const int32_t n_vocab = hparams.n_vocab;
+
+        if (n_vocab != hparams.n_vocab) {
+            fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+                    __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
+            return false;
+        }
+
+        std::string word;
+        vocab.id_to_token.resize(n_vocab);
+        for (int i = 0; i < n_vocab; i++) {
+            uint32_t len;
+            finp.read ((char *) &len, sizeof(len));
+            fout.write((char *) &len, sizeof(len));
+
+            word.resize(len);
+            finp.read ((char *) word.data(), len);
+            fout.write((char *) word.data(), len);
+
+            float score;
+            finp.read ((char *) &score, sizeof(score));
+            fout.write((char *) &score, sizeof(score));
+
+            vocab.token_to_id[word] = i;
+
+            auto &tok_score = vocab.id_to_token[i];
+            tok_score.tok = word;
+            tok_score.score = score;
+        }
+    }
+
+    // load weights
+    {
+        size_t total_size_org = 0;
+        size_t total_size_new = 0;
+
+        std::vector<float> work;
+
+        std::vector<uint8_t>     data_u8;
+        std::vector<ggml_fp16_t> data_f16;
+        std::vector<float>       data_f32;
+
+        std::vector<int64_t> hist_all(1 << 4, 0);
+
+        while (true) {
+            int32_t n_dims;
+            int32_t length;
+            int32_t ftype;
+
+            finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+            finp.read(reinterpret_cast<char *>(&length), sizeof(length));
+            finp.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
+
+            if (finp.eof()) {
+                break;
+            }
+
+            int32_t nelements = 1;
+            int32_t ne[2] = { 1, 1 };
+            for (int i = 0; i < n_dims; ++i) {
+                finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+                nelements *= ne[i];
+            }
+
+            std::string name(length, 0);
+            finp.read (&name[0], length);
+
+            {
+                static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
+                printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
+            }
+
+            // regexes of tensor names to be quantized
+            const std::vector<std::string> k_names = {
+                ".*weight",
+            };
+
+            bool quantize = false;
+            for (const auto & s : k_names) {
+                if (std::regex_match(name, std::regex(s))) {
+                    quantize = true;
+                    break;
+                }
+            }
+
+            // quantize only 2D tensors
+            quantize &= (n_dims == 2);
+
+            if (quantize) {
+                if (ftype != 0 && ftype != 1) {
+                    fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
+                    return false;
+                }
+
+                if (ftype == 1) {
+                    data_f16.resize(nelements);
+                    finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
+                    data_f32.resize(nelements);
+                    for (int i = 0; i < nelements; ++i) {
+                        data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
+                    }
+                } else {
+                    data_f32.resize(nelements);
+                    finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
+                }
+
+                ftype = itype;
+            } else {
+                const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
+
+                data_u8.resize(nelements*bpe);
+                finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
+            }
+
+            fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+            fout.write(reinterpret_cast<char *>(&length), sizeof(length));
+            fout.write(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
+            for (int i = 0; i < n_dims; ++i) {
+                fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+            }
+            fout.write(&name[0], length);
+
+            if (quantize) {
+                printf("quantizing .. ");
+                work.resize(nelements); // for quantization
+
+                size_t cur_size = 0;
+                std::vector<int64_t> hist_cur(1 << 4, 0);
+
+                switch (type) {
+                    case GGML_TYPE_Q4_0:
+                        {
+                            cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
+                        } break;
+                    case GGML_TYPE_Q4_1:
+                        {
+                            cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
+                        } break;
+                    default:
+                        {
+                            fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
+                            return false;
+                        }
+                }
+
+                fout.write(reinterpret_cast<char *>(work.data()), cur_size);
+                total_size_new += cur_size;
+
+                printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
+                for (int i = 0; i < (int) hist_cur.size(); ++i) {
+                    hist_all[i] += hist_cur[i];
+                }
+
+                for (int i = 0; i < (int) hist_cur.size(); ++i) {
+                    printf("%5.3f ", hist_cur[i] / (float)nelements);
+                }
+                printf("\n");
+            } else {
+                printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
+                fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
+                total_size_new += data_u8.size();
+            }
+
+            total_size_org += nelements * sizeof(float);
+        }
+
+        printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+        printf("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+
+        {
+            int64_t sum_all = 0;
+            for (int i = 0; i < (int) hist_all.size(); ++i) {
+                sum_all += hist_all[i];
+            }
+
+            printf("%s: hist: ", __func__);
+            for (int i = 0; i < (int) hist_all.size(); ++i) {
+                printf("%5.3f ", hist_all[i] / (float)sum_all);
+            }
+            printf("\n");
+        }
+    }
+
+    finp.close();
+    fout.close();
+
+    return true;
+}
+
+//
+// interface implementation
+//
+
+struct llama_context * llama_init_from_file(
+                             const char * path_model,
+            struct llama_context_params   params) {
+    ggml_time_init();
+
+    llama_context * ctx = new llama_context;
+
+    ctx->rng = std::mt19937(params.seed);
+    ctx->logits_all = params.logits_all;
+
+    ggml_type type_memory = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+    if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, type_memory, params.vocab_only)) {
+        fprintf(stderr, "%s: failed to load model\n", __func__);
+        delete ctx;
+        return nullptr;
+    }
+
+    return ctx;
+}
+
+void llama_free(struct llama_context * ctx) {
+    ggml_free(ctx->model.ctx);
+
+    delete ctx;
+}
+
+int llama_model_quantize(
+        const char * fname_inp,
+        const char * fname_out,
+               int   itype,
+               int   qk) {
+    if (!llama_model_quantize_internal(fname_inp, fname_out, itype, qk)) {
+        fprintf(stderr, "%s: failed to quantize\n", __func__);
+        return 1;
+    }
+
+    return 0;
+}
+
+int llama_eval(
+        struct llama_context * ctx,
+           const llama_token * tokens,
+                         int   n_tokens,
+                         int   n_past,
+                         int   n_threads) {
+    if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
+        fprintf(stderr, "%s: failed to eval\n", __func__);
+        return 1;
+    }
+
+    return 0;
+}
+
+int llama_tokenize(
+        struct llama_context * ctx,
+                  const char * text,
+                 llama_token * tokens,
+                         int   n_max_tokens,
+                        bool   add_bos) {
+    auto res = llama_tokenize(ctx->vocab, text, add_bos);
+
+    if (n_max_tokens < (int) res.size()) {
+        fprintf(stderr, "%s: too many tokens\n", __func__);
+        return -((int) res.size());
+    }
+
+    for (size_t i = 0; i < res.size(); i++) {
+        tokens[i] = res[i];
+    }
+
+    return res.size();
+}
+
+int llama_n_vocab(struct llama_context * ctx) {
+    return ctx->vocab.id_to_token.size();
+}
+
+int llama_n_ctx(struct llama_context * ctx) {
+    return ctx->model.hparams.n_ctx;
+}
+
+float * llama_get_logits(struct llama_context * ctx) {
+    return ctx->logits.data();
+}
+
+const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
+    if (token >= llama_n_vocab(ctx)) {
+        return nullptr;
+    }
+
+    return ctx->vocab.id_to_token[token].tok.c_str();
+}
+
+llama_token llama_token_bos() {
+    return 1;
+}
+
+llama_token llama_token_eos() {
+    return 2;
+}
+
+llama_token llama_sample_top_p_top_k(
+          llama_context * ctx,
+      const llama_token * last_n_tokens_data,
+                    int   last_n_tokens_size,
+                    int   top_k,
+                 double   top_p,
+                 double   temp,
+                 double   repeat_penalty) {
+    const int64_t t_start_sample_us = ggml_time_us();
+
+    llama_token result = 0;
+
+    // TODO: avoid this ...
+    const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
+
+    result = llama_sample_top_p_top_k(
+            *ctx,
+            last_n_tokens,
+            top_k,
+            top_p,
+            temp,
+            repeat_penalty);
+
+    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+    ctx->n_sample++;
+
+    return result;
+}
+
+
+void llama_print_timings(struct llama_context * ctx) {
+    const int64_t t_end_us = ggml_time_us();
+
+    const int32_t n_sample = std::max(1, ctx->n_sample);
+    const int32_t n_eval   = std::max(1, ctx->n_eval);
+
+    fprintf(stderr, "\n");
+    fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
+    fprintf(stderr, "%s:   sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_sample_us, n_sample, 1e-3f * ctx->t_sample_us / n_sample);
+    fprintf(stderr, "%s:     eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_eval_us,   n_eval,   1e-3f * ctx->t_eval_us   / n_eval);
+    fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
+}
+
+void llama_reset_timings(struct llama_context * ctx) {
+    ctx->t_start_us = ggml_time_us();
+
+    ctx->t_sample_us = ctx->n_sample = 0;
+    ctx->t_eval_us   = ctx->n_eval   = 0;
+}
+
+const char * llama_print_system_info(void) {
+    static std::string s;
+
+    s  = "";
+    s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
+    s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
+    s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
+    s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
+    s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
+    s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
+    s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
+    s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
+    s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
+    s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
+    s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
+    s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
+
+    return s.c_str();
+}
+
diff --git a/llama.h b/llama.h
new file mode 100644 (file)
index 0000000..3df9ed1
--- /dev/null
+++ b/llama.h
@@ -0,0 +1,139 @@
+#ifndef LLAMA_H
+#define LLAMA_H
+
+#include <stddef.h>
+#include <stdint.h>
+#include <stdbool.h>
+
+#ifdef LLAMA_SHARED
+#    ifdef _WIN32
+#        ifdef LLAMA_BUILD
+#            define LLAMA_API __declspec(dllexport)
+#        else
+#            define LLAMA_API __declspec(dllimport)
+#        endif
+#    else
+#        define LLAMA_API __attribute__ ((visibility ("default")))
+#    endif
+#else
+#    define LLAMA_API
+#endif
+
+#define LLAMA_FILE_VERSION 1
+#define LLAMA_FILE_MAGIC 0x67676d66 // 'ggmf' in hex
+#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+    //
+    // C interface
+    //
+    // TODO: show sample usage
+    //
+
+    struct llama_context;
+
+    typedef int llama_token;
+
+    typedef struct llama_token_data {
+        llama_token id;  // token id
+
+        float p;     // probability of the token
+        float plog;  // log probability of the token
+
+    } llama_token_data;
+
+    struct llama_context_params {
+        int n_ctx;   // text context
+        int n_parts; // -1 for default
+        int seed;    // RNG seed, 0 for random
+
+        bool f16_kv;     // use fp16 for KV cache
+        bool logits_all; // the llama_eval() call computes all logits, not just the last one
+        bool vocab_only; // only load the vocabulary, no weights
+    };
+
+    LLAMA_API struct llama_context_params llama_context_default_params();
+
+    // Various functions for loading a ggml llama model.
+    // Allocate (almost) all memory needed for the model.
+    // Return NULL on failure
+    LLAMA_API struct llama_context * llama_init_from_file(
+                             const char * path_model,
+            struct llama_context_params   params);
+
+    // Frees all allocated memory
+    LLAMA_API void llama_free(struct llama_context * ctx);
+
+    // TODO: not great API - very likely to change
+    // Returns 0 on success
+    LLAMA_API int llama_model_quantize(
+            const char * fname_inp,
+            const char * fname_out,
+                   int   itype,
+                   int   qk);
+
+    // Run the llama inference to obtain the logits and probabilities for the next token.
+    // tokens + n_tokens is the provided batch of new tokens to process
+    // n_past is the number of tokens to use from previous eval calls
+    // Returns 0 on success
+    LLAMA_API int llama_eval(
+            struct llama_context * ctx,
+               const llama_token * tokens,
+                             int   n_tokens,
+                             int   n_past,
+                             int   n_threads);
+
+    // Convert the provided text into tokens.
+    // The tokens pointer must be large enough to hold the resulting tokens.
+    // Returns the number of tokens on success, no more than n_max_tokens
+    // Returns a negative number on failure - the number of tokens that would have been returned
+    // TODO: not sure if correct
+    LLAMA_API int llama_tokenize(
+            struct llama_context * ctx,
+                      const char * text,
+                     llama_token * tokens,
+                             int   n_max_tokens,
+                            bool   add_bos);
+
+    LLAMA_API int llama_n_vocab(struct llama_context * ctx);
+    LLAMA_API int llama_n_ctx  (struct llama_context * ctx);
+
+    // Token logits obtained from the last call to llama_eval()
+    // The logits for the last token are stored in the last row
+    // Can be mutated in order to change the probabilities of the next token
+    // Rows: n_tokens
+    // Cols: n_vocab
+    LLAMA_API float * llama_get_logits(struct llama_context * ctx);
+
+    // Token Id -> String. Uses the vocabulary in the provided context
+    LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
+
+    // Special tokens
+    LLAMA_API llama_token llama_token_bos();
+    LLAMA_API llama_token llama_token_eos();
+
+    // TODO: improve the last_n_tokens interface ?
+    LLAMA_API llama_token llama_sample_top_p_top_k(
+              llama_context * ctx,
+          const llama_token * last_n_tokens_data,
+                        int   last_n_tokens_size,
+                        int   top_k,
+                     double   top_p,
+                     double   temp,
+                     double   repeat_penalty);
+
+    // Performance information
+    LLAMA_API void llama_print_timings(struct llama_context * ctx);
+    LLAMA_API void llama_reset_timings(struct llama_context * ctx);
+
+    // Print system information
+    LLAMA_API const char * llama_print_system_info(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
index fe9e583f8c51354794a6723bed999ed2e9b2e2b8..7db3df7e9b37653ee10f0a5c589eba71144ddfc7 100644 (file)
--- a/main.cpp
+++ b/main.cpp
@@ -1,6 +1,6 @@
-#include "ggml.h"
-
 #include "utils.h"
+#include "ggml.h"
+#include "llama.h"
 
 #include <cassert>
 #include <cinttypes>
@@ -40,7 +40,7 @@ enum console_state {
     CONSOLE_STATE_DEFAULT=0,
     CONSOLE_STATE_PROMPT,
     CONSOLE_STATE_USER_INPUT
-}; 
+};
 
 static console_state con_st = CONSOLE_STATE_DEFAULT;
 static bool con_use_color = false;
@@ -65,765 +65,6 @@ void set_console_state(console_state new_st)
     }
 }
 
-static const int EOS_TOKEN_ID = 2;
-
-// determine number of model parts based on the dimension
-static const std::unordered_map<int, int> LLAMA_N_PARTS = {
-    { 4096, 1 },
-    { 5120, 2 },
-    { 6656, 4 },
-    { 8192, 8 },
-};
-
-// default hparams (LLaMA 7B)
-struct llama_hparams {
-    int32_t n_vocab = 32000;
-    int32_t n_ctx   = 512;   // this is provided as user input?
-    int32_t n_embd  = 4096;
-    int32_t n_mult  = 256;
-    int32_t n_head  = 32;
-    int32_t n_layer = 32;
-    int32_t n_rot   = 64;
-    int32_t f16     = 1;
-};
-
-struct llama_layer {
-    // normalization
-    struct ggml_tensor * attention_norm;
-
-    // attention
-    struct ggml_tensor * wq;
-    struct ggml_tensor * wk;
-    struct ggml_tensor * wv;
-    struct ggml_tensor * wo;
-
-    // normalization
-    struct ggml_tensor * ffn_norm;
-
-    // ff
-    struct ggml_tensor * w1;
-    struct ggml_tensor * w2;
-    struct ggml_tensor * w3;
-};
-
-struct llama_model {
-    llama_hparams hparams;
-
-    struct ggml_tensor * tok_embeddings;
-
-    struct ggml_tensor * norm;
-    struct ggml_tensor * output;
-
-    std::vector<llama_layer> layers;
-
-    // key + value memory
-    struct ggml_tensor * memory_k;
-    struct ggml_tensor * memory_v;
-
-    //
-    struct ggml_context * ctx;
-    std::unordered_map<std::string, struct ggml_tensor *> tensors;
-};
-
-// load the model's weights from a file
-
-bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
-    fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
-
-    std::vector<char> f_buf(1024*1024);
-
-    auto fin = std::ifstream(fname, std::ios::binary);
-    fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
-    if (!fin) {
-        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
-        return false;
-    }
-
-    // verify magic
-    {
-        uint32_t magic;
-        fin.read((char *) &magic, sizeof(magic));
-        if (magic == FILE_MAGIC_UNVERSIONED) {
-            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
-                    __func__, fname.c_str());
-            return false;
-        }
-        if (magic != FILE_MAGIC) {
-            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
-            return false;
-        }
-
-        uint32_t format_version;
-        fin.read((char *) &format_version, sizeof(format_version));
-
-        if (format_version != FILE_VERSION) {
-            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
-                    __func__, fname.c_str(), format_version, FILE_VERSION);
-            return false;
-        }
-    }
-
-    int n_ff = 0;
-
-    // load hparams
-    {
-        auto & hparams = model.hparams;
-
-        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
-        //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
-        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
-        fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
-        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
-        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
-        fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
-        fin.read((char *) &hparams.f16,     sizeof(hparams.f16));
-
-        hparams.n_ctx = n_ctx;
-
-        n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
-
-        if (n_parts < 1) {
-            n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
-        }
-
-        // temp warning to tell the user to use "--n_parts"
-        if (hparams.f16 == 4 && n_parts != 1) {
-            fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
-            fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
-        }
-
-        fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
-        fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
-        fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
-        fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
-        fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
-        fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
-        fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
-        fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
-        fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
-        fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
-    }
-
-    // load vocab
-    {
-        std::string word;
-        vocab.id_to_token.resize(model.hparams.n_vocab);
-        std::vector<char> tmp(64);
-
-        for (int i = 0; i < model.hparams.n_vocab; i++) {
-            uint32_t len;
-            fin.read((char *) &len, sizeof(len));
-
-            word.resize(len);
-            if (len > 0) {
-                tmp.resize(len);
-                fin.read(tmp.data(), len);
-                word.assign(tmp.data(), len);
-            } else {
-                word.clear();
-            }
-
-            float score;
-            fin.read((char *) &score, sizeof(score));
-
-            vocab.token_to_id[word] = i;
-
-            auto &tok_score = vocab.id_to_token[i];
-            tok_score.tok = word;
-            tok_score.score = score;
-        }
-    }
-
-    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
-    // in order to save memory and also to speed up the computation
-    // wtype is for per-layer weights, while vtype is for other weights
-    ggml_type wtype, vtype;
-    switch (model.hparams.f16) {
-        case 0: wtype = vtype = GGML_TYPE_F32;  break;
-        case 1: wtype = vtype = GGML_TYPE_F16;  break;
-        case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
-        case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
-        case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
-        default:
-                {
-                    fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
-                            __func__, fname.c_str(), model.hparams.f16);
-                    return false;
-                }
-    }
-
-    auto & ctx = model.ctx;
-
-    size_t ctx_size = 0;
-
-    {
-        const auto & hparams = model.hparams;
-
-        const int n_embd  = hparams.n_embd;
-        const int n_layer = hparams.n_layer;
-        const int n_ctx   = hparams.n_ctx;
-        const int n_vocab = hparams.n_vocab;
-
-        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
-
-        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
-
-        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
-
-        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
-
-        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
-        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
-        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
-        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
-
-        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
-
-        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
-        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
-        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
-
-        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
-        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
-
-        ctx_size += (5 + 10*n_layer)*256; // object overhead
-
-        fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
-    }
-
-    // create the ggml context
-    {
-        struct ggml_init_params params = {
-            /*.mem_size   =*/ ctx_size,
-            /*.mem_buffer =*/ NULL,
-        };
-
-        model.ctx = ggml_init(params);
-        if (!model.ctx) {
-            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
-            return false;
-        }
-    }
-
-    // prepare memory for the weights
-    {
-        const auto & hparams = model.hparams;
-
-        const int n_embd  = hparams.n_embd;
-        const int n_layer = hparams.n_layer;
-        const int n_vocab = hparams.n_vocab;
-
-        model.layers.resize(n_layer);
-
-        model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
-
-        model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-        model.output = ggml_new_tensor_2d(ctx, vtype,         n_embd, n_vocab);
-
-        // map by name
-        model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
-
-        model.tensors["norm.weight"]   = model.norm;
-        model.tensors["output.weight"] = model.output;
-
-        for (int i = 0; i < n_layer; ++i) {
-            auto & layer = model.layers[i];
-
-            layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
-            layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
-            layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
-            layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
-            layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
-
-            layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
-            layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
-            layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
-            layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
-
-            // map by name
-            model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
-
-            model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
-            model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
-            model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
-            model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
-
-            model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
-
-            model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
-            model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
-            model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
-        }
-    }
-
-    // key + value memory
-    {
-        const auto & hparams = model.hparams;
-
-        const int n_embd  = hparams.n_embd;
-        const int n_layer = hparams.n_layer;
-        const int n_ctx   = hparams.n_ctx;
-
-        const int n_mem      = n_layer*n_ctx;
-        const int n_elements = n_embd*n_mem;
-
-        model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
-        model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
-
-        const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
-
-        fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
-    }
-
-    const size_t file_offset = fin.tellg();
-
-    fin.close();
-
-    std::vector<uint8_t> tmp;
-
-    for (int i = 0; i < n_parts; ++i) {
-        const int part_id = i;
-        //const int part_id = n_parts - i - 1;
-
-        std::string fname_part = fname;
-        if (i > 0) {
-            fname_part += "." + std::to_string(i);
-        }
-
-        fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
-
-        fin = std::ifstream(fname_part, std::ios::binary);
-        fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
-        fin.seekg(file_offset);
-
-        // load weights
-        {
-            int n_tensors = 0;
-            size_t total_size = 0;
-
-            fprintf(stderr, "%s: ", __func__);
-
-            while (true) {
-                int32_t n_dims;
-                int32_t length;
-                int32_t ftype;
-
-                fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
-                fin.read(reinterpret_cast<char *>(&length), sizeof(length));
-                fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
-
-                if (fin.eof()) {
-                    break;
-                }
-
-                int32_t nelements = 1;
-                int32_t ne[2] = { 1, 1 };
-                for (int i = 0; i < n_dims; ++i) {
-                    fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
-                    nelements *= ne[i];
-                }
-
-                std::string name(length, 0);
-                fin.read(&name[0], length);
-
-                if (model.tensors.find(name.data()) == model.tensors.end()) {
-                    fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
-                    return false;
-                }
-
-                // split_type = 0: split by columns
-                // split_type = 1: split by rows
-                int split_type = 0;
-
-                // split_type = 0:
-                // regex:
-                //   - tok_embeddings.*
-                //   - layers.*.attention.wo.weight
-                //   - layers.*.feed_forward.w2.weight
-
-                // split_type = 1:
-                // regex:
-                //   - output.*
-                //   - layers.*.attention.wq.weight
-                //   - layers.*.attention.wk.weight
-                //   - layers.*.attention.wv.weight
-                //   - layers.*.feed_forward.w1.weight
-                //   - layers.*.feed_forward.w3.weight
-                if (name.find("tok_embeddings") != std::string::npos) {
-                    split_type = 0;
-                } else if (name.find("layers") != std::string::npos) {
-                    if (name.find("attention.wo.weight") != std::string::npos) {
-                        split_type = 0;
-                    } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
-                        split_type = 0;
-                    } else {
-                        split_type = 1;
-                    }
-                } else if (name.find("output") != std::string::npos) {
-                    split_type = 1;
-                }
-
-                auto tensor = model.tensors[name.data()];
-
-                if (n_dims == 1) {
-                    if (ggml_nelements(tensor) != nelements) {
-                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
-                        return false;
-                    }
-                } else {
-                    if (ggml_nelements(tensor)/n_parts != nelements) {
-                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
-                        return false;
-                    }
-                }
-
-                if (n_dims == 1) {
-                    if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
-                        fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
-                                __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
-                        return false;
-                    }
-                } else {
-                    if (split_type == 0) {
-                        if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
-                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
-                                    __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
-                            return false;
-                        }
-                    } else {
-                        if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
-                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
-                                    __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
-                            return false;
-                        }
-                    }
-                }
-
-                if (0) {
-                    static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
-                    fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
-                }
-
-                size_t bpe = 0;
-
-                switch (ftype) {
-                    case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
-                    case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
-                    case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
-                    case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
-                    default:
-                            {
-                                fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
-                                return false;
-                            }
-                };
-
-                if (n_dims == 1 || n_parts == 1) {
-                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
-                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
-                                __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
-                        return false;
-                    }
-
-                    if (part_id == 0) {
-                        fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
-                    } else {
-                        fin.seekg(ggml_nbytes(tensor), std::ios::cur);
-                    }
-
-                    total_size += ggml_nbytes(tensor);
-                } else {
-                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
-                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
-                                __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
-                        return false;
-                    }
-
-                    if (split_type == 0) {
-                        const int np0 = ne[0];
-
-                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
-                        assert(row_size == tensor->nb[1]);
-
-                        for (int i1 = 0; i1 < ne[1]; ++i1) {
-                            const size_t offset_row = i1*row_size;
-                            const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
-                            fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
-                        }
-                    } else {
-                        const int np1 = ne[1];
-
-                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
-
-                        for (int i1 = 0; i1 < ne[1]; ++i1) {
-                            const size_t offset_row = (i1 + part_id*np1)*row_size;
-                            fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
-                        }
-                    }
-
-                    total_size += ggml_nbytes(tensor)/n_parts;
-                }
-
-                //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
-                if (++n_tensors % 8 == 0) {
-                    fprintf(stderr, ".");
-                    fflush(stderr);
-                }
-            }
-
-            fprintf(stderr, " done\n");
-
-            fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
-        }
-
-        fin.close();
-    }
-
-    return true;
-}
-
-// evaluate the transformer
-//
-//   - model:     the model
-//   - n_threads: number of threads to use
-//   - n_past:    the context size so far
-//   - embd_inp:  the embeddings of the tokens in the context
-//   - embd_w:    the predicted logits for the next token
-//
-// The GPT-J model requires about 16MB of memory per input token.
-//
-bool llama_eval(
-        const llama_model & model,
-        const int n_threads,
-        const int n_past,
-        const std::vector<llama_vocab::id> & embd_inp,
-              std::vector<float>           & embd_w,
-              size_t                       & mem_per_token,
-              bool return_all_logits = false) {
-    const int N = embd_inp.size();
-
-    const auto & hparams = model.hparams;
-
-    const int n_embd  = hparams.n_embd;
-    const int n_layer = hparams.n_layer;
-    const int n_ctx   = hparams.n_ctx;
-    const int n_head  = hparams.n_head;
-    const int n_vocab = hparams.n_vocab;
-    const int n_rot   = hparams.n_embd/hparams.n_head;
-
-    // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
-    // static size_t buf_size = hparams.n_ctx*1024*1024;
-    static size_t buf_size = 512u*1024*1024;
-    static void * buf = malloc(buf_size);
-
-    if (mem_per_token > 0 && mem_per_token*N > buf_size) {
-        const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
-        //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
-
-        // reallocate
-        buf_size = buf_size_new;
-        buf = realloc(buf, buf_size);
-        if (buf == nullptr) {
-            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
-            return false;
-        }
-    }
-
-    struct ggml_init_params params = {
-        /*.mem_size   =*/ buf_size,
-        /*.mem_buffer =*/ buf,
-    };
-
-    struct ggml_context * ctx0 = ggml_init(params);
-    ggml_cgraph gf = {};
-    gf.n_threads = n_threads;
-
-    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
-    memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
-
-    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
-
-    for (int il = 0; il < n_layer; ++il) {
-        struct ggml_tensor * inpSA = inpL;
-
-        struct ggml_tensor * cur;
-
-        // norm
-        {
-            cur = ggml_rms_norm(ctx0, inpL);
-
-            // cur = attention_norm*cur
-            cur = ggml_mul(ctx0,
-                        ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
-                        cur);
-        }
-
-        // self-attention
-        {
-            struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
-            struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
-            struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
-
-            // store key and value to memory
-            if (N >= 1) {
-                struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
-                struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
-
-                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
-                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
-            }
-
-            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
-            struct ggml_tensor * Q =
-                ggml_permute(ctx0,
-                        ggml_rope(ctx0,
-                            ggml_cpy(ctx0,
-                                Qcur,
-                                ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
-                            n_past, n_rot, 0),
-                        0, 2, 1, 3);
-
-            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
-            struct ggml_tensor * K =
-                ggml_permute(ctx0,
-                        ggml_rope(ctx0,
-                            ggml_reshape_3d(ctx0,
-                                ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
-                                n_embd/n_head, n_head, n_past + N),
-                            n_past, n_rot, 1),
-                        0, 2, 1, 3);
-
-            // K * Q
-            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
-
-            // KQ_scaled = KQ / sqrt(n_embd/n_head)
-            struct ggml_tensor * KQ_scaled =
-                ggml_scale(ctx0,
-                        KQ,
-                        ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
-                        );
-
-            // KQ_masked = mask_past(KQ_scaled)
-            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
-
-            // KQ = soft_max(KQ_masked)
-            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
-
-            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
-            struct ggml_tensor * V_trans =
-                ggml_permute(ctx0,
-                        ggml_reshape_3d(ctx0,
-                            ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
-                            n_embd/n_head, n_head, n_past + N),
-                        1, 2, 0, 3);
-
-            // KQV = transpose(V) * KQ_soft_max
-            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
-
-            // KQV_merged = KQV.permute(0, 2, 1, 3)
-            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
-
-            // cur = KQV_merged.contiguous().view(n_embd, N)
-            cur = ggml_cpy(ctx0,
-                    KQV_merged,
-                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
-
-            // projection (no bias)
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].wo,
-                    cur);
-        }
-
-        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
-
-        // feed-forward network
-        {
-            // norm
-            {
-                cur = ggml_rms_norm(ctx0, inpFF);
-
-                // cur = ffn_norm*cur
-                cur = ggml_mul(ctx0,
-                        ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
-                        cur);
-            }
-
-            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
-                    model.layers[il].w3,
-                    cur);
-
-
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].w1,
-                    cur);
-
-            // SILU activation
-            cur = ggml_silu(ctx0, cur);
-
-            cur = ggml_mul(ctx0, cur, tmp);
-
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].w2,
-                    cur);
-        }
-
-        cur  = ggml_add(ctx0, cur, inpFF);
-
-        // input for next layer
-        inpL = cur;
-    }
-
-    // norm
-    {
-        inpL = ggml_rms_norm(ctx0, inpL);
-
-        // inpL = norm*inpL
-        inpL = ggml_mul(ctx0,
-                    ggml_repeat(ctx0, model.norm, inpL),
-                    inpL);
-    }
-
-    // lm_head
-    {
-        inpL = ggml_mul_mat(ctx0, model.output, inpL);
-    }
-
-    // logits -> probs
-    //inpL = ggml_soft_max(ctx0, inpL);
-
-    // run the computation
-    ggml_build_forward_expand(&gf, inpL);
-    ggml_graph_compute       (ctx0, &gf);
-
-    //if (n_past%100 == 0) {
-    //    ggml_graph_print   (&gf);
-    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
-    //}
-
-    //embd_w.resize(n_vocab*N);
-    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
-
-    if (return_all_logits) {
-        embd_w.resize(n_vocab * N);
-        memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
-    } else {
-        // return result for just the last token
-        embd_w.resize(n_vocab);
-        memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
-    }
-
-    if (mem_per_token == 0) {
-        mem_per_token = ggml_used_mem(ctx0)/N;
-    }
-    //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
-
-    ggml_free(ctx0);
-
-    return true;
-}
-
 std::vector<double> softmax(const std::vector<float>& logits) {
     std::vector<double> probs(logits.size());
     float max_logit = logits[0];
@@ -840,24 +81,25 @@ std::vector<double> softmax(const std::vector<float>& logits) {
     return probs;
 }
 
-void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params &params, size_t mem_per_token) {
+void perplexity(llama_context * ctx, const gpt_params & params) {
     // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
     // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
     // Output: `perplexity: 13.5106 [114/114]`
-    std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
+    auto tokens = ::llama_tokenize(ctx, params.prompt.c_str(), true);
 
     int count = 0;
     double nll = 0.0;
     int seq_count = tokens.size() / params.n_ctx;
-    printf("Calculating perplexity over %d chunks\n", seq_count);
+
+    fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
+
     for (int i = 0; i < seq_count; ++i) {
         int start = i * params.n_ctx;
         int end = start + params.n_ctx - 1;
-        std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
-        std::vector<float> logits;
+        std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
         auto start_t = std::chrono::high_resolution_clock::now();
-        if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
-            fprintf(stderr, "Failed to predict\n");
+        if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
+            fprintf(stderr, "%s : failed to eval\n", __func__);
             return;
         }
         auto end_t = std::chrono::high_resolution_clock::now();
@@ -877,12 +119,14 @@ void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_pa
         // Example, we have a context window of 512, we will compute perplexity for each of the
         // last 256 tokens.  Then, we split the input up into context window size chunks to
         // process the entire prompt.
+
+        auto logits = llama_get_logits(ctx);
         for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
             // Calculate probability of next token, given the previous ones.
-            int n_vocab = model.hparams.n_vocab;
+            int n_vocab = llama_n_vocab(ctx);
             std::vector<float> tok_logits(
-                logits.begin() + j * n_vocab,
-                logits.begin() + (j + 1) * n_vocab);
+                logits + j * n_vocab,
+                logits + (j + 1) * n_vocab);
             double prob = softmax(tok_logits)[tokens[start + j + 1]];
             nll += -std::log(prob);
             ++count;
@@ -910,29 +154,9 @@ void sigint_handler(int signo) {
 }
 #endif
 
-const char * llama_print_system_info(void) {
-    static std::string s;
-
-    s  = "";
-    s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
-    s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
-    s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
-    s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
-    s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
-    s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
-    s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
-    s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
-    s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
-    s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
-    s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
-    s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
-
-    return s.c_str();
-}
-
 int main(int argc, char ** argv) {
+    // has to be called once at the start of the program to init ggml stuff
     ggml_time_init();
-    const int64_t t_main_start_us = ggml_time_us();
 
     gpt_params params;
     params.model = "models/llama-7B/ggml-model.bin";
@@ -964,21 +188,21 @@ int main(int argc, char ** argv) {
 //    params.prompt = R"(// this function checks if the number n is prime
 //bool is_prime(int n) {)";
 
-    int64_t t_load_us = 0;
-
-    llama_vocab vocab;
-    llama_model model;
+    llama_context * ctx;
 
     // load the model
     {
-        const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
-        const int64_t t_start_us = ggml_time_us();
-        if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
-            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+        auto lparams = llama_context_default_params();
+
+        lparams.f16_kv = params.memory_f16;
+        lparams.logits_all = params.perplexity;
+
+        ctx = llama_init_from_file(params.model.c_str(), lparams);
+
+        if (ctx == NULL) {
+            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
             return 1;
         }
-
-        t_load_us = ggml_time_us() - t_start_us;
     }
 
     // print system information
@@ -988,32 +212,33 @@ int main(int argc, char ** argv) {
                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
     }
 
-    std::vector<float> logits;
-
     // determine the required inference memory per token:
-    size_t mem_per_token = 0;
-    llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
+    // TODO: better way to do that
+    {
+        const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
+        llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
+    }
 
     if (params.perplexity) {
-        perplexity(vocab, model, params, mem_per_token);
+        perplexity(ctx, params);
         exit(0);
     }
 
     int n_past = 0;
 
-    int64_t t_sample_us  = 0;
-    int64_t t_predict_us = 0;
-
     // Add a space in front of the first character to match OG llama tokenizer behavior
     params.prompt.insert(0, 1, ' ');
+
     // tokenize the prompt
-    std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
+    auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
 
-    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
+    const int n_ctx = llama_n_ctx(ctx);
+
+    params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size());
 
     // prefix & suffix for instruct mode
-    const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
-    const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
+    const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
+    const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
 
     // in instruct mode, we inject a prefix and a suffix to each input by the user
     if (params.instruct) {
@@ -1030,7 +255,7 @@ int main(int argc, char ** argv) {
     fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
     fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
     for (int i = 0; i < (int) embd_inp.size(); i++) {
-        fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
+        fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
     }
     fprintf(stderr, "\n");
     if (params.interactive) {
@@ -1055,10 +280,10 @@ int main(int argc, char ** argv) {
     fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
     fprintf(stderr, "\n\n");
 
-    std::vector<llama_vocab::id> embd;
+    std::vector<llama_token> embd;
 
     int last_n_size = params.repeat_last_n;
-    std::vector<llama_vocab::id> last_n_tokens(last_n_size);
+    std::vector<llama_token> last_n_tokens(last_n_size);
     std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 
     if (params.interactive) {
@@ -1092,14 +317,10 @@ int main(int argc, char ** argv) {
     while (remaining_tokens > 0 || params.interactive) {
         // predict
         if (embd.size() > 0) {
-            const int64_t t_start_us = ggml_time_us();
-
-            if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
-                fprintf(stderr, "Failed to predict\n");
+            if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
+                fprintf(stderr, "%s : failed to eval\n", __func__);
                 return 1;
             }
-
-            t_predict_us += ggml_time_us() - t_start_us;
         }
 
         n_past += embd.size();
@@ -1107,29 +328,28 @@ int main(int argc, char ** argv) {
 
         if ((int) embd_inp.size() <= input_consumed) {
             // out of user input, sample next token
-            const float top_k = params.top_k;
-            const float top_p = params.top_p;
-            const float temp  = params.temp;
+            const float top_k          = params.top_k;
+            const float top_p          = params.top_p;
+            const float temp           = params.temp;
             const float repeat_penalty = params.repeat_penalty;
 
-            const int n_vocab = model.hparams.n_vocab;
-
-            llama_vocab::id id = 0;
+            llama_token id = 0;
 
             {
-                const int64_t t_start_sample_us = ggml_time_us();
+                auto logits = llama_get_logits(ctx);
 
                 if (params.ignore_eos) {
                     // set the logit of the eos token to zero to avoid sampling it
-                    logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
+                    //logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
+                    // TODO: this does not work of params.logits_all == true
+                    assert(params.perplexity == false);
+                    logits[llama_token_eos()] = 0;
                 }
 
-                id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
+                id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
 
                 last_n_tokens.erase(last_n_tokens.begin());
                 last_n_tokens.push_back(id);
-
-                t_sample_us += ggml_time_us() - t_start_sample_us;
             }
 
             // add it to the context
@@ -1156,7 +376,7 @@ int main(int argc, char ** argv) {
         // display text
         if (!input_noecho) {
             for (auto id : embd) {
-                printf("%s", vocab.id_to_token[id].tok.c_str());
+                printf("%s", llama_token_to_str(ctx, id));
             }
             fflush(stdout);
         }
@@ -1171,7 +391,7 @@ int main(int argc, char ** argv) {
             // check for reverse prompt
             std::string last_output;
             for (auto id : last_n_tokens) {
-                last_output += vocab.id_to_token[id].tok;
+                last_output += llama_token_to_str(ctx, id);
             }
 
             // Check if each of the reverse prompts appears at the end of the output.
@@ -1208,7 +428,7 @@ int main(int argc, char ** argv) {
                 // done taking input, reset color
                 set_console_state(CONSOLE_STATE_DEFAULT);
 
-                std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
+                auto line_inp = ::llama_tokenize(ctx, buffer, false);
                 embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 
                 if (params.instruct) {
@@ -1223,7 +443,7 @@ int main(int argc, char ** argv) {
         }
 
         // end of text token
-        if (embd.back() == EOS_TOKEN_ID) {
+        if (embd.back() == llama_token_eos()) {
             if (params.interactive) {
                 is_interacting = true;
             } else {
@@ -1243,19 +463,9 @@ int main(int argc, char ** argv) {
     signal(SIGINT, SIG_DFL);
 #endif
 
-    // report timing
-    {
-        const int64_t t_main_end_us = ggml_time_us();
-
-        fprintf(stderr, "\n\n");
-        fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
-        fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
-        fprintf(stderr, "%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
-        fprintf(stderr, "%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
-        fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
-    }
+    llama_print_timings(ctx);
 
-    ggml_free(model.ctx);
+    llama_free(ctx);
 
     set_console_state(CONSOLE_STATE_DEFAULT);
 
index aba94bd10a4ac08a05b3eca27d6ba0d8d5115e65..3651f708e80eaa74f2f0004bbcfd8744b15e48e0 100644 (file)
Binary files a/models/ggml-vocab.bin and b/models/ggml-vocab.bin differ
index 52b7ac9b3d242a0501a7857fc5572a1820f1d4d7..f0230f5dc788e0283e09dccaeb12352e4f1e119d 100644 (file)
 #include "ggml.h"
+#include "llama.h"
 
-#include "utils.h"
-
-#include <cassert>
-#include <cinttypes>
-#include <cmath>
 #include <cstdio>
-#include <cstring>
-#include <fstream>
 #include <string>
-#include <vector>
-#include <regex>
-
-// TODO: move somewhere else
-#define QK 32
-
-// default hparams (LLaMA76B)
-struct llama_hparams {
-    int32_t n_vocab = 32000;
-    int32_t n_ctx   = 512;   // this is provided as user input?
-    int32_t n_embd  = 4096;
-    int32_t n_mult  = 256;
-    int32_t n_head  = 32;
-    int32_t n_layer = 32;
-    int32_t n_rot   = 64;
-    int32_t f16     = 1;
-};
-
-
-// quantize a model
-bool llama_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
-    ggml_type type = GGML_TYPE_Q4_1;
-
-    switch (itype) {
-        case 2: type = GGML_TYPE_Q4_0; break;
-        case 3: type = GGML_TYPE_Q4_1; break;
-        default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
-    };
-
-    if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
-        fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
-        return false;
-    }
-
-    llama_vocab vocab;
-
-    printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
-
-    auto finp = std::ifstream(fname_inp, std::ios::binary);
-    if (!finp) {
-        fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
-        return false;
-    }
-
-    auto fout = std::ofstream(fname_out, std::ios::binary);
-    if (!fout) {
-        fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
-        return false;
-    }
-
-    // verify magic
-    {
-        uint32_t magic;
-        finp.read((char *) &magic, sizeof(magic));
-        if (magic == FILE_MAGIC_UNVERSIONED) {
-            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
-                    __func__, fname_inp.c_str());
-            return false;
-        }
-        if (magic != FILE_MAGIC) {
-            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
-            return false;
-        }
-
-        fout.write((char *) &magic, sizeof(magic));
-
-        uint32_t format_version;
-        finp.read((char *) &format_version, sizeof(format_version));
-
-        if (format_version != FILE_VERSION) {
-            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
-                    __func__, fname_inp.c_str(), format_version, FILE_VERSION);
-            return false;
-        }
-
-        fout.write((char *) &format_version, sizeof(format_version));
-    }
-
-    llama_hparams hparams;
-
-    // load hparams
-    {
-        finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
-        //finp.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
-        finp.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
-        finp.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
-        finp.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
-        finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
-        finp.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
-        finp.read((char *) &hparams.f16,     sizeof(hparams.f16));
-
-        printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
-        printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
-        printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
-        printf("%s: n_mult  = %d\n", __func__, hparams.n_mult);
-        printf("%s: n_head  = %d\n", __func__, hparams.n_head);
-        printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
-        printf("%s: f16     = %d\n", __func__, hparams.f16);
-
-        fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
-        //fout.write((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
-        fout.write((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
-        fout.write((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
-        fout.write((char *) &hparams.n_head,  sizeof(hparams.n_head));
-        fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
-        fout.write((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
-        fout.write((char *) &itype,           sizeof(hparams.f16));
-    }
-
-    // load vocab
-    {
-        const int32_t n_vocab = hparams.n_vocab;
-
-        if (n_vocab != hparams.n_vocab) {
-            fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
-                    __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
-            return false;
-        }
-
-        std::string word;
-        vocab.id_to_token.resize(n_vocab);
-        for (int i = 0; i < n_vocab; i++) {
-            uint32_t len;
-            finp.read ((char *) &len, sizeof(len));
-            fout.write((char *) &len, sizeof(len));
-
-            word.resize(len);
-            finp.read ((char *) word.data(), len);
-            fout.write((char *) word.data(), len);
-
-            float score;
-            finp.read ((char *) &score, sizeof(score));
-            fout.write((char *) &score, sizeof(score));
-
-            vocab.token_to_id[word] = i;
 
-            auto &tok_score = vocab.id_to_token[i];
-            tok_score.tok = word;
-            tok_score.score = score;
-        }
-    }
-
-    // load weights
-    {
-        size_t total_size_org = 0;
-        size_t total_size_new = 0;
-
-        std::vector<float> work;
-
-        std::vector<uint8_t>     data_u8;
-        std::vector<ggml_fp16_t> data_f16;
-        std::vector<float>       data_f32;
-
-        std::vector<int64_t> hist_all(1 << 4, 0);
-
-        while (true) {
-            int32_t n_dims;
-            int32_t length;
-            int32_t ftype;
-
-            finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
-            finp.read(reinterpret_cast<char *>(&length), sizeof(length));
-            finp.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
-
-            if (finp.eof()) {
-                break;
-            }
-
-            int32_t nelements = 1;
-            int32_t ne[2] = { 1, 1 };
-            for (int i = 0; i < n_dims; ++i) {
-                finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
-                nelements *= ne[i];
-            }
-
-            std::string name(length, 0);
-            finp.read (&name[0], length);
-
-            {
-                static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
-                printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
-            }
-
-            // regexes of tensor names to be quantized
-            const std::vector<std::string> k_names = {
-                ".*weight",
-            };
-
-            bool quantize = false;
-            for (const auto & s : k_names) {
-                if (std::regex_match(name, std::regex(s))) {
-                    quantize = true;
-                    break;
-                }
-            }
-
-            // quantize only 2D tensors
-            quantize &= (n_dims == 2);
-
-            if (quantize) {
-                if (ftype != 0 && ftype != 1) {
-                    fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
-                    return false;
-                }
-
-                if (ftype == 1) {
-                    data_f16.resize(nelements);
-                    finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
-                    data_f32.resize(nelements);
-                    for (int i = 0; i < nelements; ++i) {
-                        data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
-                    }
-                } else {
-                    data_f32.resize(nelements);
-                    finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
-                }
-
-                ftype = itype;
-            } else {
-                const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
-
-                data_u8.resize(nelements*bpe);
-                finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
-            }
-
-            fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
-            fout.write(reinterpret_cast<char *>(&length), sizeof(length));
-            fout.write(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
-            for (int i = 0; i < n_dims; ++i) {
-                fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
-            }
-            fout.write(&name[0], length);
-
-            if (quantize) {
-                printf("quantizing .. ");
-                work.resize(nelements); // for quantization
-
-                size_t cur_size = 0;
-                std::vector<int64_t> hist_cur(1 << 4, 0);
-
-                switch (type) {
-                    case GGML_TYPE_Q4_0:
-                        {
-                            cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
-                        } break;
-                    case GGML_TYPE_Q4_1:
-                        {
-                            cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
-                        } break;
-                    default:
-                        {
-                            fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
-                            return false;
-                        }
-                }
-
-                fout.write(reinterpret_cast<char *>(work.data()), cur_size);
-                total_size_new += cur_size;
-
-                printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
-                for (int i = 0; i < hist_cur.size(); ++i) {
-                    hist_all[i] += hist_cur[i];
-                }
-
-                for (int i = 0; i < hist_cur.size(); ++i) {
-                    printf("%5.3f ", hist_cur[i] / (float)nelements);
-                }
-                printf("\n");
-            } else {
-                printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
-                fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
-                total_size_new += data_u8.size();
-            }
-
-            total_size_org += nelements * sizeof(float);
-        }
-
-        printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
-        printf("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
-
-        {
-            int64_t sum_all = 0;
-            for (int i = 0; i < hist_all.size(); ++i) {
-                sum_all += hist_all[i];
-            }
-
-            printf("%s: hist: ", __func__);
-            for (int i = 0; i < hist_all.size(); ++i) {
-                printf("%5.3f ", hist_all[i] / (float)sum_all);
-            }
-            printf("\n");
-        }
-    }
-
-    finp.close();
-    fout.close();
-
-    return true;
-}
+const int QK = 32;
 
 // usage:
 //  ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
 //
 int main(int argc, char ** argv) {
     ggml_time_init();
+
     if (argc != 4) {
         fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
         fprintf(stderr, "  type = 2 - q4_0\n");
@@ -341,7 +39,7 @@ int main(int argc, char ** argv) {
     {
         const int64_t t_start_us = ggml_time_us();
 
-        if (!llama_model_quantize(fname_inp, fname_out, itype)) {
+        if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype, QK)) {
             fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
             return 1;
         }
index a2c1e3fa297038cf5c8b3c872055f1423c3b06ea..4990c34322af07a2086e6850ad8d6f83ad37208d 100644 (file)
@@ -1,4 +1,4 @@
 set(TEST_TARGET test-tokenizer-0)
 add_executable(${TEST_TARGET} ${TEST_TARGET}.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE utils)
+target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils)
 add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
index 6bc49f281a0f2f3e8b9970e6f92d11ec02762361..49bc232b6a5f39a605affd140d8e7e62c7068463 100644 (file)
@@ -1,10 +1,11 @@
 #include "utils.h"
+#include "llama.h"
 
 #include <cstdio>
 #include <string>
 #include <map>
 
-static const std::map<std::string, std::vector<llama_vocab::id>> k_tests = {
+static const std::map<std::string, std::vector<llama_token>> k_tests = {
     { "Hello World",        { 1,  10994,   2787, }, },
     { " Hello World",       { 1,  15043,   2787, }, },
     { " Hello World!",      { 1,  15043,   2787,  29991, }, },
@@ -23,14 +24,23 @@ int main(int argc, char **argv) {
 
     fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
 
-    llama_vocab vocab;
+    llama_context * ctx;
 
-    if (!llama_vocab_load(fname, vocab)) {
-        fprintf(stderr, "%s : failed to load vocab from: '%s'\n", __func__, fname.c_str());
-        return 1;
+    // load the vocab
+    {
+        auto lparams = llama_context_default_params();
+
+        lparams.vocab_only = true;
+
+        ctx = llama_init_from_file(fname.c_str(), lparams);
+
+        if (ctx == NULL) {
+            fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
+            return 1;
+        }
     }
 
-    const int n_vocab = vocab.id_to_token.size();
+    const int n_vocab = llama_n_vocab(ctx);
 
     if (n_vocab != 32000) {
         fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
@@ -38,7 +48,7 @@ int main(int argc, char **argv) {
     }
 
     for (const auto & test_kv : k_tests) {
-        const auto res = llama_tokenize(vocab, test_kv.first, true);
+        const auto res = ::llama_tokenize(ctx, test_kv.first, true);
 
         bool correct = res.size() == test_kv.second.size();
 
index b15c68adeea72a807800bf1f1d00d3ffe8da5efd..f9c4c6848011778fba9aa795d8f4d6b7a309233c 100644 (file)
--- a/utils.cpp
+++ b/utils.cpp
@@ -3,12 +3,9 @@
 #include <cassert>
 #include <cstring>
 #include <fstream>
-#include <regex>
-#include <iostream>
-#include <iterator>
-#include <queue>
 #include <string>
-#include <math.h>
+#include <iterator>
+#include <algorithm>
 
  #if defined(_MSC_VER) || defined(__MINGW32__)
  #include <malloc.h> // using malloc.h with MSC/MINGW
@@ -147,509 +144,11 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
     return "The";
 }
 
-void replace(std::string & str, const std::string & needle, const std::string & replacement) {
-    size_t pos = 0;
-    while ((pos = str.find(needle, pos)) != std::string::npos) {
-        str.replace(pos, needle.length(), replacement);
-        pos += replacement.length();
-    }
-}
-
-std::unordered_map<std::string, int32_t> json_parse(const std::string & fname) {
-    std::unordered_map<std::string, int32_t> result;
-
-    // read file into string
-    std::string json;
-    {
-        std::ifstream ifs(fname);
-        if (!ifs) {
-            fprintf(stderr, "Failed to open %s\n", fname.c_str());
-            exit(1);
-        }
-
-        json = std::string((std::istreambuf_iterator<char>(ifs)),
-                (std::istreambuf_iterator<char>()));
-    }
-
-    if (json[0] != '{') {
-        return result;
-    }
-
-    // parse json
-    {
-        bool has_key  = false;
-        bool in_token = false;
-
-        std::string str_key = "";
-        std::string str_val = "";
-
-        int n = json.size();
-        for (int i = 1; i < n; ++i) {
-            if (!in_token) {
-                if (json[i] == ' ') continue;
-                if (json[i] == '"') {
-                    in_token = true;
-                    continue;
-                }
-            } else {
-                if (json[i] == '\\' && i+1 < n) {
-                    if (has_key == false) {
-                        str_key += json[i];
-                    } else {
-                        str_val += json[i];
-                    }
-                    ++i;
-                } else if (json[i] == '"') {
-                    if (has_key == false) {
-                        has_key = true;
-                        ++i;
-                        while (json[i] == ' ') ++i;
-                        ++i; // :
-                        while (json[i] == ' ') ++i;
-                        if (json[i] != '\"') {
-                            while (json[i] != ',' && json[i] != '}') {
-                                str_val += json[i++];
-                            }
-                            has_key = false;
-                        } else {
-                            in_token = true;
-                            continue;
-                        }
-                    } else {
-                        has_key = false;
-                    }
-
-                    ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
-                    ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
-                    ::replace(str_key, "\\\"",    "\""); // \\\"   -> "
-
-                    try {
-                        result[str_key] = std::stoi(str_val);
-                    } catch (...) {
-                        //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
-
-                    }
-                    str_key = "";
-                    str_val = "";
-                    in_token = false;
-                    continue;
-                }
-                if (has_key == false) {
-                    str_key += json[i];
-                } else {
-                    str_val += json[i];
-                }
-            }
-        }
-    }
-
-    return result;
-}
-
-static size_t utf8_len(char src) {
-    const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
-    uint8_t highbits = static_cast<uint8_t>(src) >> 4;
-    return lookup[highbits];
-}
-
-struct llama_sp_symbol {
-    using index = int;
-    index prev;
-    index next;
-    const char * text;
-    size_t n;
-};
-
-struct llama_sp_bigram {
-    struct comparator {
-        bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
-            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
-        }
-    };
-    using queue_storage = std::vector<llama_sp_bigram>;
-    using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
-    llama_sp_symbol::index left;
-    llama_sp_symbol::index right;
-    float score;
-    size_t size;
-};
-
-// original implementation:
-// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
-struct llama_tokenizer {
-    llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
-
-    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
-        // split string into utf8 chars
-        int index = 0;
-        size_t offs = 0;
-        while (offs < text.size()) {
-            llama_sp_symbol sym;
-            size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
-            sym.text = text.c_str() + offs;
-            sym.n = char_len;
-            offs += char_len;
-            sym.prev = index - 1;
-            sym.next = offs == text.size() ? -1 : index + 1;
-            index++;
-            symbols_.emplace_back(std::move(sym));
-        }
-
-        // seed the work queue with all possible 2-character tokens.
-        for (size_t i = 1; i < symbols_.size(); ++i) {
-            try_add_bigram(i - 1, i);
-        }
-
-        // keep substituting the highest frequency pairs for as long as we can.
-        while (!work_queue_.empty()) {
-            auto bigram = work_queue_.top();
-            work_queue_.pop();
-
-            auto & left_sym = symbols_[bigram.left];
-            auto & right_sym = symbols_[bigram.right];
-
-            // if one of the symbols already got merged, skip it.
-            if (left_sym.n == 0 || right_sym.n == 0 ||
-                left_sym.n + right_sym.n != bigram.size) {
-                continue;
-            }
-
-            // merge the right sym into the left one
-            left_sym.n += right_sym.n;
-            right_sym.n = 0;
-
-            //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
-
-            // remove the right sym from the chain
-            left_sym.next = right_sym.next;
-            if (right_sym.next >= 0) {
-                symbols_[right_sym.next].prev = bigram.left;
-            }
-
-            // find more substitutions
-            try_add_bigram(left_sym.prev, bigram.left);
-            try_add_bigram(bigram.left, left_sym.next);
-        }
-
-        for (int i = 0; i != -1; i = symbols_[i].next) {
-            auto & symbol = symbols_[i];
-            auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
-
-            if (token == vocab_.token_to_id.end()) {
-                // output any symbols that did not form tokens as bytes.
-                for (int j = 0; j < (int) symbol.n; ++j) {
-                    llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
-                    output.push_back(token_id);
-                }
-            } else {
-                output.push_back((*token).second);
-            }
-        }
-    }
-
-private:
-    void try_add_bigram(int left, int right) {
-        if (left == -1 || right == -1) {
-            return;
-        }
-
-        const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
-        auto token = vocab_.token_to_id.find(text);
-
-        if (token == vocab_.token_to_id.end()) {
-            return;
-        }
-
-        if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
-            return;
-        }
-
-        const auto &tok_score = vocab_.id_to_token[(*token).second];
-
-        llama_sp_bigram bigram;
-        bigram.left = left;
-        bigram.right = right;
-        bigram.score = tok_score.score;
-        bigram.size = text.size();
-        work_queue_.push(bigram);
-    }
-
-    const llama_vocab & vocab_;
-    std::vector<llama_sp_symbol> symbols_;
-    llama_sp_bigram::queue work_queue_;
-};
-
-// TODO: temporary code duplication with llama.cpp
-//       will resolve after #77 is merged
-bool llama_vocab_load(const std::string & fname, llama_vocab & vocab) {
-    std::ifstream fin(fname, std::ios::binary);
-    if (!fin.is_open()) {
-        return false;
-    }
-
-    int n_vocab = 0;
-    fin.read((char *) &n_vocab, sizeof(n_vocab));
-
-    std::string word;
-    std::vector<char> tmp(64);
-
-    vocab.id_to_token.resize(n_vocab);
-
-    for (int i = 0; i < n_vocab; i++) {
-        uint32_t len;
-        fin.read((char *) &len, sizeof(len));
-
-        word.resize(len);
-        if (len > 0) {
-            tmp.resize(len);
-            fin.read(tmp.data(), len);
-            word.assign(tmp.data(), len);
-        } else {
-            word.clear();
-        }
-
-        float score;
-        fin.read((char *) &score, sizeof(score));
-
-        vocab.token_to_id[word] = i;
-
-        auto &tok_score = vocab.id_to_token[i];
-        tok_score.tok = word;
-        tok_score.score = score;
-    }
-
-    return true;
-}
-
-std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
-    llama_tokenizer tokenizer(vocab);
-    std::vector<llama_vocab::id> output;
-
-    if (text.size() == 0) {
-        return output;
-    }
-
-    if (bos) {
-        output.push_back(1);
-    }
-
-    tokenizer.tokenize(text, output);
-    return output;
-}
-
-void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
-    // find the top K tokens
-    std::partial_sort(
-            logits_id.begin(),
-            logits_id.begin() + top_k, logits_id.end(),
-            [](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
-        return a.first > b.first;
-    });
-
-    logits_id.resize(top_k);
-}
-
-llama_vocab::id llama_sample_top_p_top_k(
-        const llama_vocab & vocab,
-        const float * logits,
-        std::vector<llama_vocab::id> & last_n_tokens,
-        double repeat_penalty,
-        int top_k,
-        double top_p,
-        double temp,
-        std::mt19937 & rng) {
-    int n_logits = vocab.id_to_token.size();
-
-    std::vector<std::pair<double, llama_vocab::id>> logits_id;
-    logits_id.reserve(n_logits);
-
-    {
-        const double scale = 1.0/temp;
-        for (int i = 0; i < n_logits; ++i) {
-            // repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
-            // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
-            if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
-                // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
-                if (logits[i] < 0.0) {
-                    logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
-                } else {
-                    logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
-                }
-            } else {
-                logits_id.push_back(std::make_pair(logits[i]*scale, i));
-            }
-        }
-    }
-
-    sample_top_k(logits_id, top_k);
-
-    double maxl = -INFINITY;
-    for (const auto & kv : logits_id) {
-        maxl = std::max(maxl, kv.first);
-    }
-
-    // compute probs for the top K tokens
-    std::vector<double> probs;
-    probs.reserve(logits_id.size());
-
-    double sum = 0.0;
-    for (const auto & kv : logits_id) {
-        double p = exp(kv.first - maxl);
-        probs.push_back(p);
-        sum += p;
-    }
-
-    // normalize the probs
-    for (auto & p : probs) {
-        p /= sum;
-    }
-
-    if (top_p < 1.0f) {
-        double cumsum = 0.0f;
-        for (int i = 0; i < (int) probs.size(); i++) {
-            cumsum += probs[i];
-            if (cumsum >= top_p) {
-                probs.resize(i + 1);
-                logits_id.resize(i + 1);
-                break;
-            }
-        }
-
-        cumsum = 1.0/cumsum;
-        for (int i = 0; i < (int) probs.size(); i++) {
-            probs[i] *= cumsum;
-        }
-    }
-
-    //printf("\n");
-    //for (int i = 0; i < (int) 10; i++) {
-    //    printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
-    //}
-    //printf("\n\n");
-    //exit(0);
-
-    std::discrete_distribution<> dist(probs.begin(), probs.end());
-    int idx = dist(rng);
-
-    return logits_id[idx].second;
-}
-
-
-size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
-    const int nb = k / qk;
-    const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
-    const size_t row_size = nb*bs;
-
-    assert(k % qk == 0);
-
-    const size_t pp_size = qk / 2;
-    uint8_t *pp = static_cast<uint8_t*>(alloca(pp_size));
-
-    char * pdst = (char *) dst;
-
-    for (int j = 0; j < n; j += k) {
-        uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
-        uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
-
-        for (int i = 0; i < nb; i++) {
-            float amax = 0.0f; // absolute max
-
-            {
-                for (int l = 0; l < qk; l++) {
-                    const float v = src[j + i*qk + l];
-                    amax = std::max(amax, fabsf(v));
-                }
-
-                const float d = amax / ((1 << 3) - 1);
-                const float id = d ? 1.0f/d : 0.0f;
-
-                *(float *) pd = d;
-                pd += bs;
-
-                for (int l = 0; l < qk; l += 2) {
-                    const float v0 = (src[j + i*qk + l + 0])*id;
-                    const float v1 = (src[j + i*qk + l + 1])*id;
-
-                    const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
-                    const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
-
-                    assert(vi0 >= 0 && vi0 < 16);
-                    assert(vi1 >= 0 && vi1 < 16);
-
-                    hist[vi0]++;
-                    hist[vi1]++;
-
-                    pp[l/2] = vi0 | (vi1 << 4);
-                }
-
-                memcpy(pb, pp, pp_size);
-                pb += bs;
-            }
-        }
-    }
-
-    return (n/k)*row_size;
-}
-
-size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
-    const int nb = k / qk;
-    const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
-    const size_t row_size = nb*bs;
-
-    assert(k % qk == 0);
-
-    const size_t pp_size = qk / 2;
-    uint8_t *pp = static_cast<uint8_t*>(alloca(pp_size));
-
-    char * pdst = (char *) dst;
-
-    for (int j = 0; j < n; j += k) {
-        uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
-        uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs +   sizeof(float));
-        uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
-
-        //printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
-
-        for (int i = 0; i < nb; i++) {
-            float min = std::numeric_limits<float>::max();
-            float max = std::numeric_limits<float>::min();
-
-            {
-                for (int l = 0; l < qk; l++) {
-                    const float v = src[j + i*qk + l];
-                    if (v < min) min = v;
-                    if (v > max) max = v;
-                }
-
-                const float d = (max - min) / ((1 << 4) - 1);
-                const float id = d ? 1.0f/d : 0.0f;
-
-                *(float *) pd = d;
-                *(float *) pm = min;
-                pd += bs;
-                pm += bs;
-
-                for (int l = 0; l < qk; l += 2) {
-                    const float v0 = (src[j + i*qk + l + 0] - min)*id;
-                    const float v1 = (src[j + i*qk + l + 1] - min)*id;
-
-                    const uint8_t vi0 = round(v0);
-                    const uint8_t vi1 = round(v1);
-
-                    assert(vi0 >= 0 && vi0 < 16);
-                    assert(vi1 >= 0 && vi1 < 16);
-
-                    hist[vi0]++;
-                    hist[vi1]++;
-
-                    pp[l/2] = vi0 | (vi1 << 4);
-                }
-
-                memcpy(pb, pp, pp_size);
-                pb += bs;
-            }
-        }
-    }
+// TODO: not great allocating this every time
+std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
+    std::vector<llama_token> res(8096);
+    int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
+    res.resize(n);
 
-    return (n/k)*row_size;
+    return res;
 }
diff --git a/utils.h b/utils.h
index 31290385993402dccc360ab08f9d7e355237aac9..3f970eabbcdc8e437133de224246c5cfaf0482b9 100644 (file)
--- a/utils.h
+++ b/utils.h
@@ -2,8 +2,9 @@
 
 #pragma once
 
+#include "llama.h"
+
 #include <string>
-#include <unordered_map>
 #include <vector>
 #include <random>
 #include <thread>
@@ -49,64 +50,8 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 
 std::string gpt_random_prompt(std::mt19937 & rng);
 
-//
-// Model file parsing
-//
-
-#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
-#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
-#define FILE_VERSION 1
-
 //
 // Vocab utils
 //
 
-struct llama_vocab {
-    using id    = int32_t;
-    using token = std::string;
-
-    struct token_score {
-        token tok;
-        float score;
-    };
-
-    std::unordered_map<token, id> token_to_id;
-    std::vector<token_score> id_to_token;
-};
-
-void replace(std::string & str, const std::string & needle, const std::string & replacement);
-
-// poor-man's JSON parsing
-std::unordered_map<std::string, int32_t> json_parse(const std::string & fname);
-
-// TODO: temporary until #77 is merged, need this now for some tokenizer tests
-bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
-
-// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
-// ref: https://github.com/google/sentencepiece
-std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
-
-// sample next token given probabilities for each embedding
-//
-//   - consider only the top K tokens
-//   - from them, consider only the top tokens with cumulative probability > P
-//
-llama_vocab::id llama_sample_top_p_top_k(
-        const llama_vocab & vocab,
-        const float * logits,
-        std::vector<llama_vocab::id> & last_n_tokens,
-        double repeat_penalty,
-        int top_k,
-        double top_p,
-        double temp,
-        std::mt19937 & rng);
-
-// filer to top K tokens from list of logits
-void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
-
-//
-// Quantization
-//
-
-size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
-size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
+std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);