model_arch = gguf.MODEL_ARCH.QWEN2
+@Model.register("Qwen2MoeForCausalLM")
+class Qwen2MoeModel(Model):
+ model_arch = gguf.MODEL_ARCH.QWEN2MOE
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ if (n_experts := self.hparams.get("num_experts")) is not None:
+ self.gguf_writer.add_expert_count(n_experts)
+
+ def write_tensors(self):
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ n_experts = self.hparams.get("num_experts")
+ experts = dict()
+ for name, data_torch in self.get_tensors():
+ # we don't need these
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # process the experts separately
+ if name.find("experts") != -1:
+ experts[name] = data
+ if len(experts) >= n_experts * 3:
+ # merge the experts into a single 3d tensor
+ for bid in range(block_count):
+ for w_name in ["down_proj", "gate_proj", "up_proj"]:
+ full = True
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ if ename not in experts:
+ full = False
+ break
+ if not full:
+ continue
+
+ datas = []
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ datas.append(experts[ename])
+ del experts[ename]
+
+ data = np.stack(datas, axis=0)
+ data_dtype = data.dtype
+
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ if self.ftype == 1 and data_dtype == np.float32:
+ data = data.astype(np.float16)
+
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+ new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+ continue
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts.keys()}")
+
+
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
GGML_METAL_KERNEL_TYPE_TANH,
GGML_METAL_KERNEL_TYPE_RELU,
GGML_METAL_KERNEL_TYPE_GELU,
+ GGML_METAL_KERNEL_TYPE_GELU_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
+ GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU,
+ GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
+ // we are not taking into account the strides, so for now require contiguous tensors
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
case GGML_UNARY_OP_TANH:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
} break;
case GGML_UNARY_OP_GELU:
{
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
+ int64_t n = ggml_nelements(dst);
+
+ id<MTLComputePipelineState> pipeline = nil;
+
+ if (n % 4 == 0) {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
+ n /= 4;
+ } else {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
+ }
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- const int64_t n = ggml_nelements(dst);
- GGML_ASSERT(n % 4 == 0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
+ int64_t n = ggml_nelements(dst);
+
+ id<MTLComputePipelineState> pipeline = nil;
+
+ if (n % 4 == 0) {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
+ n /= 4;
+ } else {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
+ }
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- const int64_t n = ggml_nelements(dst);
- GGML_ASSERT(n % 4 == 0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SILU:
{
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
+ int64_t n = ggml_nelements(dst);
+
+ id<MTLComputePipelineState> pipeline = nil;
+
+ if (n % 4 == 0) {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
+ n /= 4;
+ } else {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
+ }
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
- const int64_t n = ggml_nelements(dst);
- GGML_ASSERT(n % 4 == 0);
-
- [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float & x = src0[tpig];
+
+ dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
+}
+
+kernel void kernel_gelu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
}
kernel void kernel_gelu_quick(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float & x = src0[tpig];
+
+ dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
+}
+
+kernel void kernel_gelu_quick_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
}
kernel void kernel_silu(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float & x = src0[tpig];
+ dst[tpig] = x / (1.0f + exp(-x));
+}
+
+kernel void kernel_silu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
+ QWEN2MOE = auto()
PHI2 = auto()
PLAMO = auto()
CODESHELL = auto()
class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- TOKEN_EMBD_NORM = auto()
- TOKEN_TYPES = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_OUT_NORM = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE_INP = auto()
- FFN_NORM = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_ACT = auto()
- FFN_GATE_EXP = auto()
- FFN_DOWN_EXP = auto()
- FFN_UP_EXP = auto()
- ATTN_Q_NORM = auto()
- ATTN_K_NORM = auto()
- LAYER_OUT_NORM = auto()
- SSM_IN = auto()
- SSM_CONV1D = auto()
- SSM_X = auto()
- SSM_DT = auto()
- SSM_A = auto()
- SSM_D = auto()
- SSM_OUT = auto()
+ TOKEN_EMBD = auto()
+ TOKEN_EMBD_NORM = auto()
+ TOKEN_TYPES = auto()
+ POS_EMBD = auto()
+ OUTPUT = auto()
+ OUTPUT_NORM = auto()
+ ROPE_FREQS = auto()
+ ATTN_Q = auto()
+ ATTN_K = auto()
+ ATTN_V = auto()
+ ATTN_QKV = auto()
+ ATTN_OUT = auto()
+ ATTN_NORM = auto()
+ ATTN_NORM_2 = auto()
+ ATTN_OUT_NORM = auto()
+ ATTN_ROT_EMBD = auto()
+ FFN_GATE_INP = auto()
+ FFN_GATE_INP_SHEXP = auto()
+ FFN_NORM = auto()
+ FFN_GATE = auto()
+ FFN_DOWN = auto()
+ FFN_UP = auto()
+ FFN_ACT = auto()
+ FFN_GATE_EXP = auto()
+ FFN_DOWN_EXP = auto()
+ FFN_UP_EXP = auto()
+ FFN_GATE_SHEXP = auto()
+ FFN_DOWN_SHEXP = auto()
+ FFN_UP_SHEXP = auto()
+ ATTN_Q_NORM = auto()
+ ATTN_K_NORM = auto()
+ LAYER_OUT_NORM = auto()
+ SSM_IN = auto()
+ SSM_CONV1D = auto()
+ SSM_X = auto()
+ SSM_DT = auto()
+ SSM_A = auto()
+ SSM_D = auto()
+ SSM_OUT = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.QWEN2: "qwen2",
+ MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
- MODEL_TENSOR.TOKEN_TYPES: "token_types",
- MODEL_TENSOR.POS_EMBD: "position_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
- MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
- MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
- MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
- MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
- MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
- MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
- MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
- MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
- MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
- MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
- MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
- MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
- MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
- MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
+ MODEL_TENSOR.TOKEN_EMBD: "token_embd",
+ MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
+ MODEL_TENSOR.TOKEN_TYPES: "token_types",
+ MODEL_TENSOR.POS_EMBD: "position_embd",
+ MODEL_TENSOR.OUTPUT_NORM: "output_norm",
+ MODEL_TENSOR.OUTPUT: "output",
+ MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
+ MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
+ MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
+ MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
+ MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
+ MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
+ MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
+ MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
+ MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
+ MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
+ MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
+ MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
+ MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
+ MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
+ MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
+ MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
+ MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
+ MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
+ MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
+ MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
+ MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
+ MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
+ MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
+ MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
+ MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
+ MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
+ MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
+ MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
+ MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
+ MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
+ MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
+ MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
+ MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
+ MODEL_ARCH.QWEN2MOE: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_GATE_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.FFN_GATE_INP_SHEXP,
+ MODEL_TENSOR.FFN_GATE_SHEXP,
+ MODEL_TENSOR.FFN_DOWN_SHEXP,
+ MODEL_TENSOR.FFN_UP_SHEXP,
+ ],
MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
+ "model.layers.{bid}.mlp.gate", # qwen2moe
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
),
+ MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
+ "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
+ ),
+
# Feed-forward up
MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
),
MODEL_TENSOR.FFN_UP_EXP: (
- "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
+ "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
+ "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
+ "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
+ "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
+ ),
+
+ MODEL_TENSOR.FFN_UP_SHEXP: (
+ "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
),
# AWQ-activation gate
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
+ "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
+ ),
+
+ MODEL_TENSOR.FFN_GATE_SHEXP: (
+ "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
),
# Feed-forward down
),
MODEL_TENSOR.FFN_DOWN_EXP: (
- "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
+ "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
+ "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
+ "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
+ "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
+ ),
+
+ MODEL_TENSOR.FFN_DOWN_SHEXP: (
+ "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
),
MODEL_TENSOR.ATTN_Q_NORM: (
if tensor not in MODEL_TENSORS[arch]:
continue
# TODO: make this configurable
- n_experts = 8
+ n_experts = 60
for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name)
#endif
#define LLAMA_MAX_NODES 8192
-#define LLAMA_MAX_EXPERTS 16
+#define LLAMA_MAX_EXPERTS 60
//
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
+ LLM_ARCH_QWEN2MOE,
LLM_ARCH_PHI2,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" },
+ { LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
+ LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
+ LLM_TENSOR_FFN_DOWN_SHEXP,
+ LLM_TENSOR_FFN_GATE_SHEXP,
+ LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_QWEN2MOE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ },
+ },
{
LLM_ARCH_PHI2,
{
MODEL_MEDIUM,
MODEL_LARGE,
MODEL_XL,
+ MODEL_A2_7B,
MODEL_8x7B,
MODEL_8x22B,
MODEL_16x12B,
struct ggml_tensor * ffn_down_exps;
struct ggml_tensor * ffn_up_exps ;
+ // ff shared expert (shexp)
+ struct ggml_tensor * ffn_gate_inp_shexp;
+ struct ggml_tensor * ffn_gate_shexp;
+ struct ggml_tensor * ffn_down_shexp;
+ struct ggml_tensor * ffn_up_shexp;
+
// ff bias
struct ggml_tensor * ffn_down_b; // b2
struct ggml_tensor * ffn_up_b; // b3
case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B";
case MODEL_XL: return "1.5B";
+ case MODEL_A2_7B: return "A2.7B";
case MODEL_8x7B: return "8x7B";
case MODEL_8x22B: return "8x22B";
case MODEL_16x12B: return "16x12B";
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_A2_7B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_PHI2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
}
} break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ GGML_ASSERT(hparams.n_expert > 0);
+ GGML_ASSERT(hparams.n_expert_used > 0);
+
+ // MoE branch
+ auto n_ff_exp = n_ff / hparams.n_expert_used;
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+
+ // Shared expert branch
+ layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
+ layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
+ layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
case LLM_ARCH_PHI2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
+ cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
}
// REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505
- ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) {
+ ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) {
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
cb(logits, "ffn_moe_logits", il);
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
- cb(weights_sum, "ffn_moe_weights_sum", il);
+ if (norm_w) {
+ ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
+ cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
- cb(weights, "ffn_moe_weights_norm", il);
+ weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
+ cb(weights, "ffn_moe_weights_norm", il);
+ }
// compute expert outputs
ggml_tensor * moe_out = nullptr;
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il);
+ cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il);
// Grok
// if layer_out_norm is present then apply it before adding the input
LLM_NORM, cb, il);
cb(cur, "attn_out_norm", il);
- cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
+ cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
return gf;
}
+ struct ggml_cgraph * build_qwen2moe() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self_attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // MoE branch
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il);
+
+ // FFN shared expert
+ {
+ ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
+ cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
+
+ // sigmoid
+ ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
+ cb(cur_gate, "ffn_shexp_gate", il);
+
+ ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up_shexp, NULL,
+ model.layers[il].ffn_gate_shexp, NULL,
+ model.layers[il].ffn_down_shexp, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur_ffn, "ffn_shexp", il);
+
+ ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
+ cb(ffn_shexp_out, "ffn_shexp_out", il);
+
+ moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
+ cb(moe_out, "ffn_out", il);
+
+ cur = moe_out;
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_phi2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
{
result = llm.build_qwen2();
} break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ result = llm.build_qwen2moe();
+ } break;
case LLM_ARCH_PHI2:
{
result = llm.build_phi2();
case LLM_ARCH_STABLELM:
case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2:
+ case LLM_ARCH_QWEN2MOE:
case LLM_ARCH_PHI2:
case LLM_ARCH_GEMMA:
case LLM_ARCH_STARCODER2:
// unary ops
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
test_cases.emplace_back(new test_unary((ggml_unary_op) op));
+ test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
}
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));