]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add support for Orion-14B (#5118)
authorsharpHL <redacted>
Sun, 28 Jan 2024 08:00:30 +0000 (16:00 +0800)
committerGitHub <redacted>
Sun, 28 Jan 2024 08:00:30 +0000 (10:00 +0200)
* add support for Orion-14B(https://huggingface.co/OrionStarAI/Orion-14B-Chat)

* flake8 support

* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Update llama.cpp

Co-authored-by: slaren <redacted>
* Update llama.cpp

* Update llama.cpp

---------

Co-authored-by: lixiaopu <redacted>
Co-authored-by: Georgi Gerganov <redacted>
Co-authored-by: slaren <redacted>
convert-hf-to-gguf.py
gguf-py/gguf/constants.py
llama.cpp

index 7a0a8c3dbaca30020faa1d3e1a9d2e28fa836e8a..6ab7f486ed73e8e5b4362aea3b56c29c0e30d903 100755 (executable)
@@ -201,6 +201,8 @@ class Model:
             return PlamoModel
         if model_architecture == "CodeShellForCausalLM":
             return CodeShellModel
+        if model_architecture == "OrionForCausalLM":
+            return OrionModel
         return Model
 
     def _is_model_safetensors(self) -> bool:
@@ -250,6 +252,8 @@ class Model:
             return gguf.MODEL_ARCH.PLAMO
         if arch == "CodeShellForCausalLM":
             return gguf.MODEL_ARCH.CODESHELL
+        if arch == "OrionForCausalLM":
+            return gguf.MODEL_ARCH.ORION
 
         raise NotImplementedError(f'Architecture "{arch}" not supported!')
 
@@ -572,6 +576,83 @@ class MPTModel(Model):
                 self.gguf_writer.add_tensor("output.weight", data)
 
 
+class OrionModel(Model):
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+        hf_repo = self.hparams.get("_name_or_path", "")
+
+        ctx_length = 0
+        if "max_sequence_length" in self.hparams:
+            ctx_length = self.hparams["max_sequence_length"]
+        elif "max_position_embeddings" in self.hparams:
+            ctx_length = self.hparams["max_position_embeddings"]
+        elif "model_max_length" in self.hparams:
+            ctx_length = self.hparams["model_max_length"]
+        else:
+            print("gguf: can not find ctx length parameter.")
+            sys.exit()
+
+        self.gguf_writer.add_file_type(self.ftype)
+        self.gguf_writer.add_name(self.dir_model.name)
+        self.gguf_writer.add_source_hf_repo(hf_repo)
+        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+        self.gguf_writer.add_context_length(ctx_length)
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
+
+    def write_tensors(self):
+        # Collect tensors from generator object
+        model_kv = dict(self.get_tensors())
+        block_count = self.hparams["num_hidden_layers"]
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+        for name, data_torch in model_kv.items():
+            # we don't need these
+            if name.endswith(".rotary_emb.inv_freq"):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+            self.gguf_writer.add_tensor(new_name, data)
+
+
 class BaichuanModel(Model):
     def set_vocab(self):
         self._set_vocab_sentencepiece()
index 2d9c33c7d38548da0eb6b26cf1371aed384ec97d..f5c933a4176e425f83d49c2d455d4e63918b7339 100644 (file)
@@ -101,6 +101,7 @@ class MODEL_ARCH(IntEnum):
     PHI2      = auto()
     PLAMO     = auto()
     CODESHELL = auto()
+    ORION     = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -151,6 +152,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.PHI2:           "phi2",
     MODEL_ARCH.PLAMO:          "plamo",
     MODEL_ARCH.CODESHELL:      "codeshell",
+    MODEL_ARCH.ORION:          "orion",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -427,7 +429,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_NORM,
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
-    ]
+    ],
+    MODEL_ARCH.ORION: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     # TODO
 }
 
@@ -452,6 +470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.ROPE_FREQS,
         MODEL_TENSOR.ATTN_ROT_EMBD,
     ],
+    MODEL_ARCH.ORION: [
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+    ],
 }
 
 #
index b03b67e169955cc684148155c566d6db3f069ba2..4cd0f16ebc1d7b0aaf51ef0694cb6742f94b979d 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -196,6 +196,7 @@ enum llm_arch {
     LLM_ARCH_PHI2,
     LLM_ARCH_PLAMO,
     LLM_ARCH_CODESHELL,
+    LLM_ARCH_ORION,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -217,6 +218,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
     { LLM_ARCH_PHI2,            "phi2"      },
     { LLM_ARCH_PLAMO,           "plamo"     },
     { LLM_ARCH_CODESHELL,       "codeshell" },
+    { LLM_ARCH_ORION,           "orion"     },
 };
 
 enum llm_kv {
@@ -641,6 +643,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_ORION,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
 
     {
         LLM_ARCH_UNKNOWN,
@@ -1332,6 +1353,7 @@ enum e_model {
     MODEL_7B,
     MODEL_8B,
     MODEL_13B,
+    MODEL_14B,
     MODEL_15B,
     MODEL_30B,
     MODEL_34B,
@@ -2683,6 +2705,7 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_7B:     return "7B";
         case MODEL_8B:     return "8B";
         case MODEL_13B:    return "13B";
+        case MODEL_14B:    return "14B";
         case MODEL_15B:    return "15B";
         case MODEL_30B:    return "30B";
         case MODEL_34B:    return "34B";
@@ -2950,7 +2973,15 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_ORION:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 
+                switch (hparams.n_layer) {
+                    case 40: model.type = e_model::MODEL_14B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     }
 
@@ -3933,6 +3964,38 @@ static bool llm_load_tensors(
                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
                     }
                 } break;
+            case LLM_ARCH_ORION:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+
+
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -4563,6 +4626,126 @@ struct llm_build_context {
             ctx0 = nullptr;
         }
     }
+    struct ggml_cgraph * build_orion() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
+        cb(inpL, "inp_embd", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                // if (model.layers[il].bq) {
+                //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                //     cb(Qcur, "Qcur", il);
+                // }
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                // if (model.layers[il].bk) {
+                //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                //     cb(Kcur, "Kcur", il);
+                // }
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                // if (model.layers[il].bv) {
+                //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                //     cb(Vcur, "Vcur", il);
+                // }
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
+                    hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                cb(cur, "kqv_out", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, cur,
+                    model.layers[il].ffn_up,   NULL,
+                    model.layers[il].ffn_gate, NULL,
+                    model.layers[il].ffn_down, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+
 
     struct ggml_cgraph * build_llama() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -6520,6 +6703,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_codeshell();
             } break;
+        case LLM_ARCH_ORION:
+            {
+                result = llm.build_orion();
+            } break;
         default:
             GGML_ASSERT(false);
     }