]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add PLM GGUF Conversion & Inference Support (#12457)
authorSi1w <redacted>
Thu, 27 Mar 2025 10:49:15 +0000 (10:49 +0000)
committerGitHub <redacted>
Thu, 27 Mar 2025 10:49:15 +0000 (12:49 +0200)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch

convert_hf_to_gguf.py
gguf-py/gguf/constants.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-model.cpp
src/llama-model.h

index a06010a790a6efe131c5d21873321f31854e0571..c605e4d052d9c22c7e9af9bf0e9937c84d25c974 100755 (executable)
@@ -4419,6 +4419,29 @@ class DeepseekV2Model(Model):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@Model.register("PLMForCausalLM")
+class PLMModel(Model):
+    model_arch = gguf.MODEL_ARCH.PLM
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
+        self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
+        self.gguf_writer.add_value_length(hparams["v_head_dim"])
+        self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+
 @Model.register("T5WithLMHeadModel")
 @Model.register("T5ForConditionalGeneration")
 @Model.register("MT5ForConditionalGeneration")
index 13cca7ab009bf7f442a66e86b7bb43c482a0cc59..1753dca4b34ce0b6eacd038d19c612eda429030f 100644 (file)
@@ -286,6 +286,7 @@ class MODEL_ARCH(IntEnum):
     GRANITE_MOE      = auto()
     CHAMELEON        = auto()
     WAVTOKENIZER_DEC = auto()
+    PLM              = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -488,6 +489,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.GRANITE_MOE:      "granitemoe",
     MODEL_ARCH.CHAMELEON:        "chameleon",
     MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
+    MODEL_ARCH.PLM:              "plm",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -1464,6 +1466,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_UP_SHEXP,
         MODEL_TENSOR.FFN_EXP_PROBS_B,
     ],
+    MODEL_ARCH.PLM: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_KV_A_MQA,
+        MODEL_TENSOR.ATTN_KV_A_NORM,
+        MODEL_TENSOR.ATTN_KV_B,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_DOWN,
+    ],
     MODEL_ARCH.CHATGLM : [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.ROPE_FREQS,
index 8664f8963cc185877c8c79f521fbfb02f7aadb9f..9e443d83029f56225a248597fe864612c0ba17d0 100644 (file)
@@ -65,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_GRANITE_MOE,      "granitemoe"       },
     { LLM_ARCH_CHAMELEON,        "chameleon"        },
     { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
+    { LLM_ARCH_PLM,              "plm"              },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
 };
 
@@ -1043,6 +1044,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_EXP_PROBS_B,    "blk.%d.exp_probs_b" },
         },
     },
+    {
+        LLM_ARCH_PLM,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_KV_A_MQA,      "blk.%d.attn_kv_a_mqa" },
+            { LLM_TENSOR_ATTN_KV_A_NORM,     "blk.%d.attn_kv_a_norm" },
+            { LLM_TENSOR_ATTN_KV_B,          "blk.%d.attn_kv_b" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_DOWN,           "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_CHATGLM,
         {
index a28815d8a14c7bdadf4f79e471bc85cd8568ac80..39e3a2ce0565c1aa7067f316cfadab1e95f6658d 100644 (file)
@@ -69,6 +69,7 @@ enum llm_arch {
     LLM_ARCH_GRANITE_MOE,
     LLM_ARCH_CHAMELEON,
     LLM_ARCH_WAVTOKENIZER_DEC,
+    LLM_ARCH_PLM,
     LLM_ARCH_UNKNOWN,
 };
 
index c8e3386fcbd0e36b162fd5f225ffaf437a4969e2..a442abeb85392f58db38386012e4e323e8cef75a 100644 (file)
@@ -47,6 +47,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_1_4B:          return "1.4B";
         case LLM_TYPE_1_5B:          return "1.5B";
         case LLM_TYPE_1_6B:          return "1.6B";
+        case LLM_TYPE_1_8B:          return "1.8B";
         case LLM_TYPE_2B:            return "2B";
         case LLM_TYPE_2_8B:          return "2.8B";
         case LLM_TYPE_2_9B:          return "2.9B";
@@ -1144,6 +1145,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_PLM:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
+                switch (hparams.n_layer) {
+                    case 32: type = LLM_TYPE_1_8B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_CHATGLM:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -3068,6 +3078,35 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         }
                     }
                 } break;
+            case LLM_ARCH_PLM:
+                {
+                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
+                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+                    const int64_t kv_lora_rank = hparams.n_lora_kv;
+
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    // output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+                    output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.wq        = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
+                        layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
+                        layer.wkv_b     = create_tensor(tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
+                        layer.wo        = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd}, 0);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                    }
+                } break;
             case LLM_ARCH_BITNET:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -11615,6 +11654,178 @@ struct llm_build_wavtokenizer_dec : public llm_graph_context {
     }
 };
 
+struct llm_build_plm : public llm_graph_context {
+    llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
+
+        const uint32_t n_embd_head_qk_rope = hparams.n_rot;
+        const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+        const uint32_t kv_lora_rank = hparams.n_lora_kv;
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        // {n_embd, n_tokens}
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                ggml_tensor * q = NULL;
+                q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(q, "q", il);
+
+                // split into {n_head * n_embd_head_qk_nope, n_tokens}
+                ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
+                        ggml_row_size(q->type, hparams.n_embd_head_k),
+                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+                        0);
+                cb(q_nope, "q_nope", il);
+
+                // and {n_head * n_embd_head_qk_rope, n_tokens}
+                ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
+                        ggml_row_size(q->type, hparams.n_embd_head_k),
+                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+                        ggml_row_size(q->type, n_embd_head_qk_nope));
+                cb(q_pe, "q_pe", il);
+
+                // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
+                ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
+                cb(kv_pe_compresseed, "kv_pe_compresseed", il);
+
+                // split into {kv_lora_rank, n_tokens}
+                ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
+                        kv_pe_compresseed->nb[1],
+                        0);
+                cb(kv_compressed, "kv_compressed", il);
+
+                // and {n_embd_head_qk_rope, n_tokens}
+                ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
+                        kv_pe_compresseed->nb[1],
+                        kv_pe_compresseed->nb[1],
+                        ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
+                cb(k_pe, "k_pe", il);
+
+                kv_compressed = build_norm(kv_compressed,
+                        model.layers[il].attn_kv_a_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(kv_compressed, "kv_compressed", il);
+
+                // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
+                ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
+                cb(kv, "kv", il);
+
+                // split into {n_head * n_embd_head_qk_nope, n_tokens}
+                ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
+                        ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
+                        ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+                        0);
+                cb(k_nope, "k_nope", il);
+
+                // and {n_head * n_embd_head_v, n_tokens}
+                ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope)));
+                cb(v_states, "v_states", il);
+
+                v_states = ggml_cont(ctx0, v_states);
+                cb(v_states, "v_states", il);
+
+                v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
+                        ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
+                        0);
+                cb(v_states, "v_states", il);
+
+                q_pe = ggml_rope_ext(
+                        ctx0, q_pe, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+                cb(q_pe, "q_pe", il);
+
+                // shared RoPE key
+                k_pe = ggml_rope_ext(
+                        ctx0, k_pe, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+                cb(k_pe, "k_pe", il);
+
+                ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
+                cb(q_states, "q_states", il);
+
+                ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
+                cb(k_states, "k_states", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, NULL,
+                        q_states, k_states, v_states, nullptr, kq_scale, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            cur = build_norm(ffn_inp,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    NULL, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 llama_memory_i * llama_model::create_memory() const {
     llama_memory_i * res;
 
@@ -11887,6 +12098,10 @@ llm_graph_result_ptr llama_model::build_graph(
             {
                 llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
             } break;
+        case LLM_ARCH_PLM:
+            {
+                llm = std::make_unique<llm_build_plm>(*this, params, gf);
+            } break;
         default:
             GGML_ABORT("fatal error");
     }
@@ -12013,6 +12228,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_ARCTIC:
         case LLM_ARCH_DEEPSEEK:
         case LLM_ARCH_DEEPSEEK2:
+        case LLM_ARCH_PLM:
         case LLM_ARCH_CHATGLM:
         case LLM_ARCH_GRANITE:
         case LLM_ARCH_GRANITE_MOE:
index a9da1215abbfd3013342f099067d50f16af57086..0064d597a961395c94f44be7db7751cdeceacf30 100644 (file)
@@ -44,6 +44,7 @@ enum llm_type {
     LLM_TYPE_1_4B,
     LLM_TYPE_1_5B,
     LLM_TYPE_1_6B,
+    LLM_TYPE_1_8B,
     LLM_TYPE_2B,
     LLM_TYPE_2_8B,
     LLM_TYPE_2_9B,