const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
-static __dpct_inline__ float warp_reduce_sum(float x,
- const sycl::nd_item<3> &item_ct1) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:98: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
- }
- return x;
-}
-
-static __dpct_inline__ sycl::float2
-warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
- mask);
- a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
- mask);
- }
- return a;
-}
-
-static __dpct_inline__ float warp_reduce_max(float x,
- const sycl::nd_item<3> &item_ct1) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:97: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), x, mask));
- }
- return x;
-}
-
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
dst[i] = x[i] * x[i];
}
-static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
-
- sycl::float2 mean_var = sycl::float2(0.f, 0.f);
-
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x() += xi;
- mean_var.y() += xi * xi;
- }
-
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- if (block_size > WARP_SIZE) {
-
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
- }
- /*
- DPCT1118:0: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- }
-
- const float mean = mean_var.x() / ncols;
- const float var = mean_var.y() / ncols - mean * mean;
- const float inv_std = sycl::rsqrt(var + eps);
-
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
- }
-}
-
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
}
}
-static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- int start = item_ct1.get_group(2) * group_size;
- int end = start + group_size;
-
- start += item_ct1.get_local_id(2);
-
- if (end >= ne_elements) {
- end = ne_elements;
- }
-
- float tmp = 0.0f; // partial sum for thread in warp
-
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
-
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
-
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- float mean = tmp / group_size;
- tmp = 0.0f;
-
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
-
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
-
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:2: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- float variance = tmp / group_size;
- float scale = sycl::rsqrt(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
-}
-
-static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
-
- float tmp = 0.0f; // partial sum for thread in warp
-
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
-
- // sum up partial sums
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
-
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:3: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- const float mean = tmp / ncols;
- const float scale = sycl::rsqrt(mean + eps);
-
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
-}
-
+template<int QUANT_BLOCK_TILE>
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
const sycl::nd_item<3> &item_ct1) {
- const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
+ const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
if (ix >= kx_padded) {
return;
const int ib = i_padded / QK8_1; // block index
const int iqs = i_padded % QK8_1; // quant index
-
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = sycl::fabs((float)xi);
- float sum = xi;
-
+ typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
+ typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
+ TC zeros;
+ TQ qzeros;
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), amax, mask));
- sum +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++)
+ {
+ zeros[i] = 0.f;
+ qzeros[i] = 0;
+ }
+ const TC xi = ix < kx ? *(TC *)&x[iy * kx + ix] : zeros;
+ float sum = xi[0];
+ float amax = sycl::fabs(xi[0]);
+#pragma unroll
+ for (int i = 1; i < QUANT_BLOCK_TILE; i++)
+ {
+ sum += xi[i];
+ amax = sycl::fmax(sycl::fabs(xi[i]), amax);
}
+ sum = warp_reduce_sum(sum, item_ct1);
+ amax = warp_reduce_max(amax, item_ct1);
const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
+ TQ q = qzeros;
+ if (amax != 0.0f)
+ {
+#pragma unroll
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
+ q[i] = sycl::round(xi[i] / d);
+ }
+ }
- y[ib].qs[iqs] = q;
+ *(TQ *)&y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
});
}
-static void norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = get_work_group_size(stream->get_device());
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
-static void group_norm_f32_sycl(const float *x, float *dst,
- const int num_groups, const int group_size,
- const int ne_elements, queue_ptr stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- const float eps_ct4 = eps;
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(
- x, dst, group_size, ne_elements, eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = get_work_group_size(stream->get_device());
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- const float eps_ct4 = eps;
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(x, dst, group_size, ne_elements,
- eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
static void concat_f32_sycl(const float *x, const float *y, float *dst,
const int ne0, int ne1, int ne2, int ne02,
queue_ptr stream) {
});
}
-static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = get_work_group_size(stream->get_device());
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
const int ky, const int kx_padded,
queue_ptr stream) {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
- const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
+ int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
+ static_assert(QK8_1 % WARP_SIZE == 0);
+ const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
}
}
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
nchannels_y, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
row_stride_x, channel_stride_x,
nchannels_y / nchannels_x, item_ct1);
const sycl::range<3> block_nums(1, nrows, 1);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
k_sum_rows_f32(x, dst, ncols, item_ct1);
});
}
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
return user_number;
}
-static inline int get_work_group_size(const sycl::device& device) {
- dpct::device_info prop;
- dpct::get_device_info(prop, device);
- return prop.get_max_work_group_size();
-}
-
static void ggml_check_sycl() try {
static bool initialized = false;
(void) src1_dd;
}
-inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
-
-inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
-
inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
(void) src1_dd;
}
-inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
-
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
int64_t min_compute_capability = INT_MAX;
int64_t max_compute_capability = INT_MIN;
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
-
int64_t min_compute_capability = INT_MAX;
if (split) {