reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
+template <int ElementsPerWI>
+static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor,
+ const int kx, const int kx_padded, const sycl::nd_item<1> & it) {
+ /*
+ Quantizes and reorders the resultant q8 tensor in a per row fashion
+ Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
+ */
+
+ auto subgroup_id = it.get_group(0);
+ auto wi_id = it.get_local_id(0);
+
+ const int num_blocks_per_row = kx / QK8_1;
+ auto row = subgroup_id / num_blocks_per_row;
+ auto col = subgroup_id % num_blocks_per_row;
+
+ auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
+ auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
+
+ auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
+ auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
+
+ sycl::vec<float, ElementsPerWI> wi_f32_vals;
+ sycl::vec<int8_t, ElementsPerWI> quantized_values;
+
+ auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
+ wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
+
+ float sum = 0.0f;
+ float amax = 0.0f;
+
+#pragma unroll(ElementsPerWI)
+ for (int i = 0; i < ElementsPerWI; i++) {
+ sum += wi_f32_vals[i];
+ amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
+ quantized_values[i] = 0;
+ }
+ sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus<float>());
+ amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum<float>());
+ float d = amax == 0 ? 1 : amax / 127;
+
+#pragma unroll(ElementsPerWI)
+ for (int i = 0; i < ElementsPerWI; i++) {
+ quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
+ }
+
+ d = amax == 0 ? 0 : d;
+
+ *reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
+ if (wi_id == 0) {
+ *ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
+ }
+}
+
static void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
o_ptr[cur_oh * ow + cur_ow] = res;
}
-static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
- const int ky, const int kx_padded,
- queue_ptr stream) {
- const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
- const sycl::range<3> num_blocks(1, ky, block_num_x);
- int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
- static_assert(QK8_1 % WARP_SIZE == 0);
- const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
+ bool reorder_q8_tensor, queue_ptr stream) {
+ if (reorder_q8_tensor) {
+ auto local_range = std::size_t(WARP_SIZE);
+ auto num_quant_blocks = ky * (kx / QK8_1);
+ auto global_range = num_quant_blocks * local_range;
+ stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
+ [=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
+ quantize_and_reorder_q8_1<QK8_1 / WARP_SIZE>(x, vy, kx, kx_padded, it);
+ });
+ } else {
+ const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
+ const sycl::range<3> num_blocks(1, ky, block_num_x);
+ int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
+ static_assert(QK8_1 % WARP_SIZE == 0);
+ const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
+ {
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
- stream->parallel_for(
- sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
- quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
- });
+ stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size),
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
+ quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
+ });
+ }
}
}
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
if (src1_on_device && src1_is_contiguous) {
+ bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder;
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
- quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
+ quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream);
/*
DPCT1010:90: SYCL uses exceptions to report errors and does not
use the error codes. The call was replaced with 0. You need to
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
- quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
+ quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream);
/*
DPCT1010:92: SYCL uses exceptions to report errors and does
not use the error codes. The call was replaced with 0. You
}
__dpct_inline__ float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset,
- const block_q8_1 * __restrict__ bq8_1, const int & iqs, int /* nblocks */) {
+ const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int /* nblocks */) {
const uint8_t * bq4_0 = static_cast<const uint8_t *>(vbq) + ibx_offset;
const ggml_half d = *(reinterpret_cast<const ggml_half *>(static_cast<const uint8_t *>(vbq) + d_offset));
int v[q4_0_traits::vdr_mmvq];
int u[2 * q4_0_traits::vdr_mmvq];
-#pragma unroll
+#pragma unroll
for (size_t i = 0; i < q4_0_traits::vdr_mmvq; ++i) {
v[i] = get_int_from_uint8(bq4_0, iqs + i);
- u[2 * i + 0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2 * i + 1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + q4_0_traits::qi);
+ u[2 * i + 0] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i);
+ u[2 * i + 1] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i + q4_0_traits::qi);
}
- return vec_dot_q4_0_q8_1_impl(v, u, d, bq8_1->ds);
+ return vec_dot_q4_0_q8_1_impl(v, u, d, *q8_1_ds);
};
};
using q4_k_traits = typename q4_k_block::traits;
float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset,
- const block_q8_1 * __restrict__ bq8_1, const int & iqs, int nblocks) {
+ const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int nblocks) {
const int ib = ibx_offset / (QK_K / 2);
const uint8_t * base = static_cast<const uint8_t *>(vbq);
const int * q4 = (const int *) (qs + 16 * bq8_offset + 4 * ((iqs / 2) % 4));
const uint16_t * scales = (const uint16_t *) scs;
- return vec_dot_q4_K_q8_1_common(q4, scales, *dms, bq8_1, iqs);
+ int v[2];
+ int u[2 * QR4_K];
+ float d8[QR4_K];
+
+ v[0] = q4[0];
+ v[1] = q4[4];
+
+ uint16_t aux[2];
+ const int j = (QR4_K * ((iqs / 2) / (QI8_1 / 2))) / 2;
+ if (j < 2) {
+ aux[0] = scales[j + 0] & 0x3f3f;
+ aux[1] = scales[j + 2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j + 2] >> 0) & 0x0f0f) | ((scales[j - 2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j + 2] >> 4) & 0x0f0f) | ((scales[j - 0] & 0xc0c0) >> 2);
+ }
+
+ const uint8_t * sc = (const uint8_t *) aux;
+ const uint8_t * m = sc + 2;
+
+ for (int i = 0; i < QR4_K; ++i) {
+ const int8_t* quant_base_ptr = q8_1_quant_ptr + (bq8_offset + i) * QK8_1;
+ sycl::half2 ds_values = *(q8_1_ds + bq8_offset + i);
+
+ d8[i] = ds_values[0];
+
+ const int * q8 = (const int *) quant_base_ptr + ((iqs / 2) % 4);
+ u[2 * i + 0] = q8[0];
+ u[2 * i + 1] = q8[4];
+ }
+
+ return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, *dms, d8);
}
};