]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert-hf : support direct Q8_0 conversion (#7234)
authorcompilade <redacted>
Mon, 13 May 2024 18:10:51 +0000 (14:10 -0400)
committerGitHub <redacted>
Mon, 13 May 2024 18:10:51 +0000 (14:10 -0400)
* convert-hf : support q8_0 conversion

* convert-hf : add missing ftype

This was messing with the checksums otherwise.

* convert-hf : add missing ftype to Baichuan and Xverse

I didn't notice these on my first pass.

convert-hf-to-gguf.py
gguf-py/gguf/__init__.py
gguf-py/gguf/gguf_writer.py
gguf-py/gguf/lazy.py
gguf-py/gguf/quants.py [new file with mode: 0644]

index d6e5dece0a2c31a99bc74953944f5bfa35c1e076..cd875fa4af6afeeefc272e1ddffc3a4bd66e5343 100755 (executable)
@@ -240,23 +240,6 @@ class Model:
         return False
 
     def write_tensors(self):
-        # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
-        def np_fp32_to_bf16(n: np.ndarray):
-            # force nan to quiet
-            n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
-            # flush subnormals to zero
-            n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
-            # round to nearest even
-            n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
-            return n.astype(np.int16)
-
-        # Doing this row-wise is much, much faster than element-wise, hence the signature
-        v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
-        if self.lazy:
-            # TODO: find a way to implicitly wrap np.vectorize functions
-            # NOTE: the type is changed to reflect otypes passed to np.vectorize above
-            v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
-
         max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
 
         for name, data_torch in self.get_tensors():
@@ -309,27 +292,31 @@ class Model:
                 ))
 
                 if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
-                    if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
+                    if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
+                        data = gguf.quantize_bf16(data)
+                        assert data.dtype == np.int16
+                        data_qtype = gguf.GGMLQuantizationType.BF16
+
+                    elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
+                        data = gguf.quantize_q8_0(data)
+                        assert data.dtype == np.uint8
+                        data_qtype = gguf.GGMLQuantizationType.Q8_0
+
+                    else:  # default to float16 for quantized tensors
                         if data_dtype != np.float16:
                             data = data.astype(np.float16)
                         data_qtype = gguf.GGMLQuantizationType.F16
 
-                    elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
-                        if data_dtype != np.float32:
-                            data = data.astype(np.float32)
-                        data = v_fp32_to_bf16(data.view(np.int32))
-                        assert data.dtype == np.int16
-                        data_qtype = gguf.GGMLQuantizationType.BF16
-
-                else:  # by default, convert to float32
+                if data_qtype is None:  # by default, convert to float32
                     if data_dtype != np.float32:
                         data = data.astype(np.float32)
                     data_qtype = gguf.GGMLQuantizationType.F32
 
-                assert data_qtype is not None
-
+                block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
                 # reverse shape to make it similar to the internal ggml dimension order
-                shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
+                shape_str = f"""{{{', '.join(str(n) for n in reversed(
+                    (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
+                )}}}"""
 
                 # n_dims is implicit in the shape
                 logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
@@ -859,6 +846,7 @@ class BaichuanModel(Model):
         self.gguf_writer.add_head_count(head_count)
         self.gguf_writer.add_head_count_kv(head_count_kv)
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
 
         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
             if self.hparams["rope_scaling"].get("type") == "linear":
@@ -981,6 +969,7 @@ class XverseModel(Model):
         self.gguf_writer.add_head_count(head_count)
         self.gguf_writer.add_head_count_kv(head_count_kv)
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
 
         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
             if self.hparams["rope_scaling"].get("type") == "linear":
@@ -1215,6 +1204,7 @@ class StableLMModel(Model):
         self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
         self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
         self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
+        self.gguf_writer.add_file_type(self.ftype)
 
     _q_norms: list[dict[str, Tensor]] | None = None
     _k_norms: list[dict[str, Tensor]] | None = None
@@ -1591,6 +1581,7 @@ class QwenModel(Model):
         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
 
 
 @Model.register("Qwen2ForCausalLM")
@@ -1828,6 +1819,7 @@ class PlamoModel(Model):
         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
         self.gguf_writer.add_head_count_kv(5)  # hparams["num_key_value_heads"]) is wrong
         self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+        self.gguf_writer.add_file_type(self.ftype)
 
     def shuffle_attn_q_weight(self, data_torch):
         assert data_torch.size() == (5120, 5120)
@@ -2007,6 +1999,7 @@ in chat mode so that the conversation can end normally.")
         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+        self.gguf_writer.add_file_type(self.ftype)
 
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         num_heads = self.hparams["num_attention_heads"]
@@ -2415,25 +2408,15 @@ class LazyTorchTensor(gguf.LazyBase):
     def numpy(self) -> gguf.LazyNumpyTensor:
         dtype = self._dtype_map[self.dtype]
         return gguf.LazyNumpyTensor(
-            meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
+            meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
             lazy=self._lazy,
             args=(self,),
             func=(lambda s: s[0].numpy())
         )
 
     @classmethod
-    def eager_to_meta(cls, t: Tensor) -> Tensor:
-        if t.is_meta:
-            return t
-        return t.detach().to("meta")
-
-    @classmethod
-    def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
-        m = m.detach()
-        if not m.is_meta:
-            m = m.to("meta")
-        m.dtype = dtype
-        return m
+    def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
+        return torch.empty(size=shape, dtype=dtype, device="meta")
 
     @classmethod
     def __torch_function__(cls, func, types, args=(), kwargs=None):
@@ -2464,8 +2447,8 @@ def parse_args() -> argparse.Namespace:
         help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
     )
     parser.add_argument(
-        "--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
-        help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
+        "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
+        help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
     )
     parser.add_argument(
         "--bigendian", action="store_true",
@@ -2523,6 +2506,7 @@ def main() -> None:
         "f32": gguf.LlamaFileType.ALL_F32,
         "f16": gguf.LlamaFileType.MOSTLY_F16,
         "bf16": gguf.LlamaFileType.MOSTLY_BF16,
+        "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
         "auto": gguf.LlamaFileType.GUESSED,
     }
 
index e5d5806c81e5e370730b8e182ab1becc513a4438..ea5146b161bc882e8fead9849e1889a2efda28e1 100644 (file)
@@ -2,5 +2,6 @@ from .constants import *
 from .lazy import *
 from .gguf_reader import *
 from .gguf_writer import *
+from .quants import *
 from .tensor_mapping import *
 from .vocab import *
index 96574358d66bb1575bfaa6876802da020d68d4b7..d5e323a52ef14005d0798777d3803739c8088ed0 100644 (file)
@@ -13,6 +13,7 @@ from string import ascii_letters, digits
 import numpy as np
 
 from .constants import (
+    GGML_QUANT_SIZES,
     GGUF_DEFAULT_ALIGNMENT,
     GGUF_MAGIC,
     GGUF_VERSION,
@@ -195,7 +196,7 @@ class GGUFWriter:
         return ((x + n - 1) // n) * n
 
     def add_tensor_info(
-        self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
+        self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
         tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
     ) -> None:
         if self.state is not WriterState.EMPTY:
@@ -208,10 +209,6 @@ class GGUFWriter:
         encoded_name = name.encode("utf-8")
         self.ti_data += self._pack("Q", len(encoded_name))
         self.ti_data += encoded_name
-        n_dims = len(tensor_shape)
-        self.ti_data += self._pack("I", n_dims)
-        for i in range(n_dims):
-            self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
         if raw_dtype is None:
             if tensor_dtype == np.float16:
                 dtype = GGMLQuantizationType.F16
@@ -231,6 +228,15 @@ class GGUFWriter:
                 raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
         else:
             dtype = raw_dtype
+            if tensor_dtype == np.uint8:
+                block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
+                if tensor_shape[-1] % type_size != 0:
+                    raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
+                tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
+        n_dims = len(tensor_shape)
+        self.ti_data += self._pack("I", n_dims)
+        for i in range(n_dims):
+            self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
         self.ti_data += self._pack("I", dtype)
         self.ti_data += self._pack("Q", self.offset_tensor)
         self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
index 650bea11c9c586d6cf36928d5acc8ff1d2798f1c..1167335b83ab374532166a638927547c9de0e237 100644 (file)
@@ -6,6 +6,7 @@ from typing import Any, Callable
 from collections import deque
 
 import numpy as np
+from numpy._typing import _Shape
 from numpy.typing import DTypeLike
 
 
@@ -110,7 +111,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
             return o
 
     @classmethod
-    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
+    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
         def wrapped_fn(*args, **kwargs):
             if kwargs is None:
                 kwargs = {}
@@ -130,9 +131,14 @@ class LazyBase(ABC, metaclass=LazyMeta):
                 res = args[0]
                 assert isinstance(res, cls)
                 res = res._meta
-                # allow operations to override the dtype
+                # allow operations to override the dtype and shape
                 if meta_noop is not True:
-                    res = cls.meta_with_dtype(res, meta_noop)
+                    if isinstance(meta_noop, tuple):
+                        dtype, shape = meta_noop
+                        assert callable(shape)
+                        res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
+                    else:
+                        res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
 
             if isinstance(res, cls._tensor_type):
                 def collect_replace(t: LazyBase):
@@ -168,7 +174,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
             while _t._data is None:
                 lt = _t._lazy.popleft()
                 if lt._data is not None:
-                    raise ValueError(f"{lt} did not belong in the lazy queue")
+                    # Lazy tensor did not belong in the lazy queue.
+                    # Weirdly only happens with Bloom models...
+                    # likely because tensors aren't unique in the queue.
+                    # The final output is still the same as in eager mode,
+                    # so it's safe to ignore this.
+                    continue
                 assert lt._func is not None
                 lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
                 lt._data = lt._func(lt._args)
@@ -183,12 +194,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
 
     @classmethod
     def eager_to_meta(cls, t: Any) -> Any:
-        return cls.meta_with_dtype(t, t.dtype)
+        return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
 
     # must be overridden, meta tensor init is backend-specific
     @classmethod
     @abstractmethod
-    def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass
+    def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
 
     @classmethod
     def from_eager(cls, t: Any) -> Any:
@@ -205,15 +216,15 @@ class LazyNumpyTensor(LazyBase):
     _tensor_type = np.ndarray
 
     @classmethod
-    def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
+    def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]:
         # The initial idea was to use np.nan as the fill value,
         # but non-float types like np.int16 can't use that.
         # So zero it is.
         cheat = np.zeros(1, dtype)
-        return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))
+        return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
 
     def astype(self, dtype, *args, **kwargs):
-        meta = type(self).meta_with_dtype(self._meta, dtype)
+        meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
         full_args = (self, dtype,) + args
         # very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
         return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py
new file mode 100644 (file)
index 0000000..e7fc0ea
--- /dev/null
@@ -0,0 +1,109 @@
+from __future__ import annotations
+from typing import Callable
+
+from numpy.typing import DTypeLike
+
+from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
+from .lazy import LazyNumpyTensor
+
+import numpy as np
+
+
+# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
+def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
+    n = n.astype(np.float32, copy=False).view(np.int32)
+    # force nan to quiet
+    n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
+    # flush subnormals to zero
+    n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
+    # round to nearest even
+    n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
+    return n.astype(np.int16)
+
+
+# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
+def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
+    rows = arr.reshape((-1, arr.shape[-1]))
+    osize = 1
+    for dim in oshape:
+        osize *= dim
+    out = np.empty(shape=osize, dtype=otype)
+    # compute over groups of 16 rows (arbitrary, but seems good for performance)
+    n_groups = rows.shape[0] // 16
+    np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
+    return out.reshape(oshape)
+
+
+def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
+    return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
+
+
+__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
+
+
+def quantize_bf16(n: np.ndarray):
+    if type(n) is LazyNumpyTensor:
+        return __quantize_bf16_lazy(n)
+    else:
+        return __quantize_bf16_array(n)
+
+
+__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
+
+
+def can_quantize_to_q8_0(n: np.ndarray) -> bool:
+    return n.shape[-1] % __q8_block_size == 0
+
+
+# round away from zero
+# ref: https://stackoverflow.com/a/59143326/22827863
+def np_roundf(n: np.ndarray) -> np.ndarray:
+    a = abs(n)
+    floored = np.floor(a)
+    b = floored + np.floor(2 * (a - floored))
+    return np.sign(n) * b
+
+
+def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
+    return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
+
+
+# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
+def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
+    shape = n.shape
+    assert shape[-1] % __q8_block_size == 0
+
+    n_blocks = n.size // __q8_block_size
+
+    blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
+
+    d = abs(blocks).max(axis=1, keepdims=True) / 127
+    with np.errstate(divide="ignore"):
+        id = np.where(d == 0, 0, 1 / d)
+    qs = np_roundf(blocks * id)
+
+    # (n_blocks, 2)
+    d = d.astype(np.float16).view(np.uint8)
+    # (n_blocks, block_size)
+    qs = qs.astype(np.int8).view(np.uint8)
+
+    assert d.shape[1] + qs.shape[1] == __q8_type_size
+
+    return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
+
+
+def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
+    return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
+
+
+__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
+    __quantize_q8_0_array,
+    meta_noop=(np.uint8, __quantize_q8_0_shape_change),
+)
+
+
+def quantize_q8_0(data: np.ndarray):
+    if type(data) is LazyNumpyTensor:
+        return __quantize_q8_0_lazy(data)
+    else:
+        return __quantize_q8_0_array(data)