return False
def write_tensors(self):
- # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
- def np_fp32_to_bf16(n: np.ndarray):
- # force nan to quiet
- n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
- # flush subnormals to zero
- n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
- # round to nearest even
- n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
- return n.astype(np.int16)
-
- # Doing this row-wise is much, much faster than element-wise, hence the signature
- v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
- if self.lazy:
- # TODO: find a way to implicitly wrap np.vectorize functions
- # NOTE: the type is changed to reflect otypes passed to np.vectorize above
- v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
-
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
for name, data_torch in self.get_tensors():
))
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
- if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
+ if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
+ data = gguf.quantize_bf16(data)
+ assert data.dtype == np.int16
+ data_qtype = gguf.GGMLQuantizationType.BF16
+
+ elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
+ data = gguf.quantize_q8_0(data)
+ assert data.dtype == np.uint8
+ data_qtype = gguf.GGMLQuantizationType.Q8_0
+
+ else: # default to float16 for quantized tensors
if data_dtype != np.float16:
data = data.astype(np.float16)
data_qtype = gguf.GGMLQuantizationType.F16
- elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
- if data_dtype != np.float32:
- data = data.astype(np.float32)
- data = v_fp32_to_bf16(data.view(np.int32))
- assert data.dtype == np.int16
- data_qtype = gguf.GGMLQuantizationType.BF16
-
- else: # by default, convert to float32
+ if data_qtype is None: # by default, convert to float32
if data_dtype != np.float32:
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
- assert data_qtype is not None
-
+ block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
# reverse shape to make it similar to the internal ggml dimension order
- shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
+ shape_str = f"""{{{', '.join(str(n) for n in reversed(
+ (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
+ )}}}"""
# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
+ self.gguf_writer.add_file_type(self.ftype)
_q_norms: list[dict[str, Tensor]] | None = None
_k_norms: list[dict[str, Tensor]] | None = None
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
@Model.register("Qwen2ForCausalLM")
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+ self.gguf_writer.add_file_type(self.ftype)
def shuffle_attn_q_weight(self, data_torch):
assert data_torch.size() == (5120, 5120)
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+ self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
- meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
+ meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
lazy=self._lazy,
args=(self,),
func=(lambda s: s[0].numpy())
)
@classmethod
- def eager_to_meta(cls, t: Tensor) -> Tensor:
- if t.is_meta:
- return t
- return t.detach().to("meta")
-
- @classmethod
- def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
- m = m.detach()
- if not m.is_meta:
- m = m.to("meta")
- m.dtype = dtype
- return m
+ def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
+ return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
- help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
+ "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
+ help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
+ "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"auto": gguf.LlamaFileType.GUESSED,
}
from .lazy import *
from .gguf_reader import *
from .gguf_writer import *
+from .quants import *
from .tensor_mapping import *
from .vocab import *
import numpy as np
from .constants import (
+ GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
return ((x + n - 1) // n) * n
def add_tensor_info(
- self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
+ self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.state is not WriterState.EMPTY:
encoded_name = name.encode("utf-8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
- n_dims = len(tensor_shape)
- self.ti_data += self._pack("I", n_dims)
- for i in range(n_dims):
- self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
if tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
else:
dtype = raw_dtype
+ if tensor_dtype == np.uint8:
+ block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
+ if tensor_shape[-1] % type_size != 0:
+ raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
+ tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
+ n_dims = len(tensor_shape)
+ self.ti_data += self._pack("I", n_dims)
+ for i in range(n_dims):
+ self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
self.ti_data += self._pack("I", dtype)
self.ti_data += self._pack("Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
from collections import deque
import numpy as np
+from numpy._typing import _Shape
from numpy.typing import DTypeLike
return o
@classmethod
- def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
+ def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
def wrapped_fn(*args, **kwargs):
if kwargs is None:
kwargs = {}
res = args[0]
assert isinstance(res, cls)
res = res._meta
- # allow operations to override the dtype
+ # allow operations to override the dtype and shape
if meta_noop is not True:
- res = cls.meta_with_dtype(res, meta_noop)
+ if isinstance(meta_noop, tuple):
+ dtype, shape = meta_noop
+ assert callable(shape)
+ res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
+ else:
+ res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
def collect_replace(t: LazyBase):
while _t._data is None:
lt = _t._lazy.popleft()
if lt._data is not None:
- raise ValueError(f"{lt} did not belong in the lazy queue")
+ # Lazy tensor did not belong in the lazy queue.
+ # Weirdly only happens with Bloom models...
+ # likely because tensors aren't unique in the queue.
+ # The final output is still the same as in eager mode,
+ # so it's safe to ignore this.
+ continue
assert lt._func is not None
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
lt._data = lt._func(lt._args)
@classmethod
def eager_to_meta(cls, t: Any) -> Any:
- return cls.meta_with_dtype(t, t.dtype)
+ return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
# must be overridden, meta tensor init is backend-specific
@classmethod
@abstractmethod
- def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass
+ def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
@classmethod
def from_eager(cls, t: Any) -> Any:
_tensor_type = np.ndarray
@classmethod
- def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
+ def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]:
# The initial idea was to use np.nan as the fill value,
# but non-float types like np.int16 can't use that.
# So zero it is.
cheat = np.zeros(1, dtype)
- return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))
+ return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
def astype(self, dtype, *args, **kwargs):
- meta = type(self).meta_with_dtype(self._meta, dtype)
+ meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
full_args = (self, dtype,) + args
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
--- /dev/null
+from __future__ import annotations
+from typing import Callable
+
+from numpy.typing import DTypeLike
+
+from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
+from .lazy import LazyNumpyTensor
+
+import numpy as np
+
+
+# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
+def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
+ n = n.astype(np.float32, copy=False).view(np.int32)
+ # force nan to quiet
+ n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
+ # flush subnormals to zero
+ n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
+ # round to nearest even
+ n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
+ return n.astype(np.int16)
+
+
+# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
+def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
+ rows = arr.reshape((-1, arr.shape[-1]))
+ osize = 1
+ for dim in oshape:
+ osize *= dim
+ out = np.empty(shape=osize, dtype=otype)
+ # compute over groups of 16 rows (arbitrary, but seems good for performance)
+ n_groups = rows.shape[0] // 16
+ np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
+ return out.reshape(oshape)
+
+
+def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
+ return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
+
+
+__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
+
+
+def quantize_bf16(n: np.ndarray):
+ if type(n) is LazyNumpyTensor:
+ return __quantize_bf16_lazy(n)
+ else:
+ return __quantize_bf16_array(n)
+
+
+__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
+
+
+def can_quantize_to_q8_0(n: np.ndarray) -> bool:
+ return n.shape[-1] % __q8_block_size == 0
+
+
+# round away from zero
+# ref: https://stackoverflow.com/a/59143326/22827863
+def np_roundf(n: np.ndarray) -> np.ndarray:
+ a = abs(n)
+ floored = np.floor(a)
+ b = floored + np.floor(2 * (a - floored))
+ return np.sign(n) * b
+
+
+def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
+ return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
+
+
+# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
+def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
+ shape = n.shape
+ assert shape[-1] % __q8_block_size == 0
+
+ n_blocks = n.size // __q8_block_size
+
+ blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
+
+ d = abs(blocks).max(axis=1, keepdims=True) / 127
+ with np.errstate(divide="ignore"):
+ id = np.where(d == 0, 0, 1 / d)
+ qs = np_roundf(blocks * id)
+
+ # (n_blocks, 2)
+ d = d.astype(np.float16).view(np.uint8)
+ # (n_blocks, block_size)
+ qs = qs.astype(np.int8).view(np.uint8)
+
+ assert d.shape[1] + qs.shape[1] == __q8_type_size
+
+ return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
+
+
+def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
+ return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
+
+
+__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
+ __quantize_q8_0_array,
+ meta_noop=(np.uint8, __quantize_q8_0_shape_change),
+)
+
+
+def quantize_q8_0(data: np.ndarray):
+ if type(data) is LazyNumpyTensor:
+ return __quantize_q8_0_lazy(data)
+ else:
+ return __quantize_q8_0_array(data)