#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
#else
- if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
+ if (op->src[0]->ne[0] == 128) {
return true;
}
- return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
+ if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
+ return true;
+ }
+ return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
+ op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;
+#pragma once
+
#include "common.cuh"
+#include "vecdotq.cuh"
#include <cstdint>
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
const int ne3);
+typedef half (*vec_dot_KQ_f16_t)(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
+typedef float (*vec_dot_KQ_f32_t)(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
+
+template<typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ half sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI4_0;
+ const int shift = k_KQ & (QI8_1/2);
+
+ const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
+ sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template<typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI4_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
+ const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
+ sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
+ const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
+
+ sum += (T) (sumid4d8 + m4s8scaled);
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template<typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI5_0;
+ const int iqs8 = k_KQ % QI8_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
+ v |= (vh << 4) & 0x00000010; // 0 -> 4
+ v |= (vh << 11) & 0x00001000; // 1 -> 12
+ v |= (vh << 18) & 0x00100000; // 2 -> 20
+ v |= (vh << 25) & 0x10000000; // 3 -> 28
+
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
+ sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template<typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI5_1;
+ const int iqs8 = k_KQ % QI8_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
+ v |= (vh << 4) & 0x00000010; // 0 -> 4
+ v |= (vh << 11) & 0x00001000; // 1 -> 12
+ v |= (vh << 18) & 0x00100000; // 2 -> 20
+ v |= (vh << 25) & 0x10000000; // 3 -> 28
+
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
+ const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
+ sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
+ const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
+
+ sum += (T) (sumid5d8 + m5s8scaled);
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template <typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_0;
+ const int iqs = k_KQ % QI8_0;
+
+ const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
+
+ T Q_d;
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+ Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
+ } else {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+ Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
+ }
+
+ sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template <typename T, int D>
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
+
+ const half2 * K_h2 = (const half2 *) K_c;
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ const half2 * Q_h2 = (const half2 *) Q_v;
+
+ half2 sum2 = make_half2(0.0f, 0.0f);
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const half2 K_ik = K_h2[k_KQ];
+ sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
+ }
+
+ return __low2half(sum2) + __high2half(sum2);
+ }
+#endif // FP16_AVAILABLE
+
+ const float2 * Q_f2 = (const float2 *) Q_v;
+
+ float sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const half2 K_ik = K_h2[k_KQ];
+ sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
+ sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
+ }
+
+ return sum;
+}
+
+template <typename Tds>
+static __device__ __forceinline__ void quantize_q8_1_to_shared(
+ const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
+
+ float vals[sizeof(int)] = {0.0f};
+#pragma unroll
+ for (int l = 0; l < sizeof(int); ++l) {
+ vals[l] = scale * x[4*threadIdx.x + l];
+ }
+
+ float amax = fabsf(vals[0]);
+ float sum = vals[0];
+#pragma unroll
+ for (int l = 1; l < sizeof(int); ++l) {
+ amax = fmaxf(amax, fabsf(vals[l]));
+ sum += vals[l];
+ }
+#pragma unroll
+ for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
+ amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
+ sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
+ }
+
+ const float d = amax / 127;
+ int q32 = 0;
+ int8_t * q8 = (int8_t *) &q32;
+
+ if (d != 0.0f) {
+#pragma unroll
+ for (int l = 0; l < sizeof(int); ++l) {
+ q8[l] = roundf(vals[l] / d);
+ }
+ }
+
+ yq32[threadIdx.x] = q32;
+ if (threadIdx.x % QI8_1 == 0) {
+ if (std::is_same<Tds, half2>::value) {
+ ((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
+ } else {
+ ((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
+ }
+ }
+}
+
+typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
+typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q4_0 * x = (const block_q4_0 *) vx;
+
+ const int64_t ib = i / QK4_0;
+ const int iqs = i % (QK4_0/2);
+ const int shift = (i % QK4_0) / (QK4_0/2);
+
+ const T d = x[ib].d;
+ const int q0 = x[ib].qs[iqs];
+ const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
+ const block_q4_1 * x = (const block_q4_1 *) vx;
+
+ const int64_t ib = i / QK4_1;
+ const int iqs = i % (QK4_1/2);
+ const int shift = (i % QK4_1) / (QK4_1/2);
+
+ const half2 dm = x[ib].dm;
+ const int q0 = x[ib].qs[iqs];
+ const int q = ((q0 >> (4*shift)) & 0x0F);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ return __low2half(dm)*((half) q) + __high2half(dm);
+ }
+#endif // FP16_AVAILABLE
+
+ return __low2float(dm)*((float) q) + __high2float(dm);
+}
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q5_0 * x = (const block_q5_0 *) vx;
+
+ const int64_t ib = i / QK5_0;
+ const int idq = i % QK5_0;
+ const int iqs = i % (QK5_0/2);
+ const int shift = (i % QK5_0) / (QK5_0/2);
+
+ const T d = x[ib].d;
+ const int ql0 = x[ib].qs[iqs];
+ const int qh0 = get_int_from_uint8(x[ib].qh, 0);
+ const int ql = ((ql0 >> (4*shift)) & 0x0F);
+ const int qh = ((qh0 >> idq) << 4) & 0x10;
+ const int q = (ql | qh) - 16;
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
+ const block_q5_1 * x = (const block_q5_1 *) vx;
+
+ const int64_t ib = i / QK5_1;
+ const int idq = i % QK5_1;
+ const int iqs = i % (QK5_1/2);
+ const int shift = (i % QK5_1) / (QK5_1/2);
+
+ const half2 dm = x[ib].dm;
+ const int ql0 = x[ib].qs[iqs];
+ const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
+ const int ql = ((ql0 >> (4*shift)) & 0x0F);
+ const int qh = ((qh0 >> idq) << 4) & 0x10;
+ const int q = (ql | qh);
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ return __low2half(dm)*((half) q) + __high2half(dm);
+ }
+#endif // FP16_AVAILABLE
+
+ return __low2float(dm)*((float) q) + __high2float(dm);
+}
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q8_0 * x = (const block_q8_0 *) vx;
+
+ const int64_t ib = i / QK8_0;
+ const int iqs = i % QK8_0;
+
+ const T d = x[ib].d;
+ const int q = x[ib].qs[iqs];
+
+#if FP16_AVAILABLE
+ if (std::is_same<T, half>::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template <typename T>
+static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
+ const half * x = (const half *) vx;
+
+ return x[i];
+}
+
+template <int D>
+constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
+ return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
+ type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
+ type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
+ type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
+ type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
+ type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
+ nullptr;
+}
+
+template <int D>
+constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
+ return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
+ type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
+ type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
+ type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
+ type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
+ type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
+ nullptr;
+}
+
+constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
+ return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
+ type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
+ type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
+ type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
+ type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
+ type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
+ nullptr;
+}
+
+constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
+ return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
+ type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
+ type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
+ type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
+ type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
+ type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
+ nullptr;
+}
+
template<int D, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
}
+static void on_no_fattn_vec_case(const int D) {
+ if (D == 64) {
+ fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
+ fprintf(stderr, "By default only f16 KV cache is supported.\n");
+ fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
+ GGML_ASSERT(false);
+ } else if (D == 128) {
+ fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
+ fprintf(stderr, "Supported combinations:\n");
+ fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
+ fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
+ fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
+ fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
+ GGML_ASSERT(false);
+ } else {
+ fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
+ fprintf(stderr, "Only f16 is supported.\n");
+ GGML_ASSERT(false);
+ }
+}
+
template <int D, int parallel_blocks>
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
const ggml_tensor * Q = dst->src[0];
ggml_tensor * KQV = dst;
GGML_ASSERT(Q->type == GGML_TYPE_F32);
- GGML_ASSERT(K->type == GGML_TYPE_F16);
- GGML_ASSERT(V->type == GGML_TYPE_F16);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
K->nb[1], K->nb[2], K->nb[3],
+ V->nb[1], V->nb[2], V->nb[3],
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
#include "common.cuh"
+#include "fattn-common.cuh"
-void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_vec_ext_f16(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+#if FP16_AVAILABLE
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+ constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
+ constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
+ constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
+
+ const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ Q += nb02* blockIdx.y + nb01*ic0;
+ K += nb12*(blockIdx.y / gqa_ratio);
+ V += nb22*(blockIdx.y / gqa_ratio);
+
+ const half * maskh = (const half *) mask + ne11*ic0;
+
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
+
+ static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
+ constexpr int nwarps = D / WARP_SIZE;
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ __builtin_assume(tid < D);
+
+ __shared__ half KQ[ncols*D];
+ half2 * KQ2 = (half2 *) KQ;
+
+ half kqmax[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax[j] = -HALF_MAX_HALF;
+ }
+ half kqsum[ncols] = {0.0f};
+
+ __shared__ half kqmax_shared[ncols][WARP_SIZE];
+ __shared__ half kqsum_shared[ncols][WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ if (threadIdx.y == 0) {
+ kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
+ kqsum_shared[j][threadIdx.x] = 0.0f;
+ }
+ }
+ __syncthreads();
+
+ // Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
+ half2 Q_h2[ncols][D/(2*WARP_SIZE)];
+ int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
+ half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
+ if (Q_q8_1) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (j0 + nwarps > ncols && j >= ncols) {
+ break;
+ }
+
+ // Reuse KQ as temporary storage for converting Q to q8_1:
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
+
+ // Set memory to zero if out of bounds:
+ if (ncols > 2 && ic0 + j >= ne01) {
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ tmp_q_i32[i] = 0;
+ }
+ if (threadIdx.x < D/QK8_1) {
+ tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
+ }
+ continue;
+ }
+
+ const float * Q_f = (const float *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
+ Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
+ }
+ }
+
+ __syncthreads();
+ } else {
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
+ Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
+ }
+ }
+ }
+
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ KQ[j*D + tid] = -HALF_MAX_HALF;
+ }
+
+ half2 VKQ[ncols] = {{0.0f, 0.0f}};
+
+ const int k_start = parallel_blocks == 1 ? 0 : ip*D;
+ for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
+ // Calculate KQ tile and keep track of new maximum KQ values:
+
+ // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
+ // see https://github.com/ggerganov/llama.cpp/pull/7061 .
+ // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
+ half kqmax_new = kqmax[0];
+ half kqmax_new_arr[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax_new_arr[j] = kqmax[j];
+ }
+
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
+ const int i_KQ = i_KQ_0 + threadIdx.y;
+
+ if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
+ break;
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
+ sum = warp_reduce_sum(sum);
+ sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
+
+ if (ncols == 1) {
+ kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
+ } else {
+ kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
+ }
+
+ if (threadIdx.x == 0) {
+ KQ[j*D + i_KQ] = sum;
+ }
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
+
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+ if (threadIdx.x == 0) {
+ kqmax_shared[j][threadIdx.y] = kqmax_new_j;
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = kqmax_shared[j][threadIdx.x];
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+
+ const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
+ kqmax[j] = kqmax_new_j;
+
+ const half val = hexp(KQ[j*D + tid] - kqmax[j]);
+ kqsum[j] = kqsum[j]*KQ_max_scale + val;
+ KQ[j*D + tid] = val;
+
+ VKQ[j] *= __half2half2(KQ_max_scale);
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int k0 = 0; k0 < D; k0 += 2) {
+ if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
+ break;
+ }
+
+ half2 V_k;
+ reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
+ reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqsum[j] = warp_reduce_sum(kqsum[j]);
+ if (threadIdx.x == 0) {
+ kqsum_shared[j][threadIdx.y] = kqsum[j];
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
+ if (ncols > 2 && ic0 + j_VKQ >= ne01) {
+ break;
+ }
+
+ kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
+ kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
+
+ half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
+ if (parallel_blocks == 1) {
+ dst_val /= kqsum[j_VKQ];
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+ dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
+ }
+
+ if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif // FP16_AVAILABLE
+}
+
+template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
+void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+template <int D, ggml_type type_K, ggml_type type_V>
+void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * KQV = dst;
+ ggml_tensor * Q = dst->src[0];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+ const int32_t precision = KQV->op_params[2];
+ GGML_ASSERT(precision == GGML_PREC_DEFAULT);
+
+ GGML_ASSERT(K->type == type_K);
+ GGML_ASSERT(V->type == type_V);
+
+ if (Q->ne[1] == 1) {
+ constexpr int cols_per_block = 1;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] == 2) {
+ constexpr int cols_per_block = 2;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 4) {
+ constexpr int cols_per_block = 4;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 8) {
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 1;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+}
+
+#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
+ template void ggml_cuda_flash_attn_ext_vec_f16_case \
+ <D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
#include "common.cuh"
+#include "fattn-common.cuh"
-void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_vec_ext_f32(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
+
+ constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
+ constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
+ constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
+
+ const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ Q += nb02* blockIdx.y + nb01*ic0;
+ K += nb12*(blockIdx.y / gqa_ratio);
+ V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
+ const half * maskh = (const half *) mask + ne11*ic0;
+
+ const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+
+ static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
+ constexpr int nwarps = D / WARP_SIZE;
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ __builtin_assume(tid < D);
+
+ __shared__ float KQ[ncols*D];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ KQ[j*D + tid] = -FLT_MAX/2.0f;
+ }
+
+ float kqmax[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax[j] = -FLT_MAX/2.0f;
+ }
+ float kqsum[ncols] = {0.0f};
+
+ __shared__ float kqmax_shared[ncols][WARP_SIZE];
+ __shared__ float kqsum_shared[ncols][WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ if (threadIdx.y == 0) {
+ kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
+ kqsum_shared[j][threadIdx.x] = 0.0f;
+ }
+ }
+ __syncthreads();
+
+ // Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
+ float2 Q_f2[ncols][D/(2*WARP_SIZE)];
+ int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
+ float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
+ if (Q_q8_1) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (j0 + nwarps > ncols && j >= ncols) {
+ break;
+ }
+
+ // Reuse KQ as temporary storage for converting Q to q8_1:
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
+
+ // Set memory to zero if out of bounds:
+ if (ncols > 2 && ic0 + j >= ne01) {
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ tmp_q_i32[i] = 0;
+ }
+ if (threadIdx.x < D/QK8_1) {
+ tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
+ }
+ continue;
+ }
+
+ const float * Q_f = (const float *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
+ Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
+ }
+ }
+
+ __syncthreads();
+ } else {
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
+ Q_f2[j][i0/WARP_SIZE].x *= scale;
+ Q_f2[j][i0/WARP_SIZE].y *= scale;
+ }
+ }
+ }
+
+ float VKQ[ncols] = {0.0f};
+
+ const int k_start = parallel_blocks == 1 ? 0 : ip*D;
+ for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
+ // Calculate KQ tile and keep track of new maximum KQ values:
+
+ float kqmax_new_arr[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax_new_arr[j] = kqmax[j];
+ }
+
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
+ const int i_KQ = i_KQ_0 + threadIdx.y;
+
+ if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
+ break;
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
+ sum = warp_reduce_sum(sum);
+ sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
+
+ kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
+
+ if (threadIdx.x == 0) {
+ KQ[j*D + i_KQ] = sum;
+ }
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float kqmax_new_j = kqmax_new_arr[j];
+
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+ if (threadIdx.x == 0) {
+ kqmax_shared[j][threadIdx.y] = kqmax_new_j;
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float kqmax_new_j = kqmax_shared[j][threadIdx.x];
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+
+ const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
+ kqmax[j] = kqmax_new_j;
+
+ const float val = expf(KQ[j*D + tid] - kqmax[j]);
+ kqsum[j] = kqsum[j]*KQ_max_scale + val;
+ KQ[j*D + tid] = val;
+
+ VKQ[j] *= KQ_max_scale;
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int k = 0; k < D; ++k) {
+ if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
+ break;
+ }
+
+ const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ VKQ[j] += V_ki*KQ[j*D + k];
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqsum[j] = warp_reduce_sum(kqsum[j]);
+ if (threadIdx.x == 0) {
+ kqsum_shared[j][threadIdx.y] = kqsum[j];
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
+ if (ncols > 2 && ic0 + j_VKQ >= ne01) {
+ break;
+ }
+
+ kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
+ kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
+
+ float dst_val = VKQ[j_VKQ];
+ if (parallel_blocks == 1) {
+ dst_val /= kqsum[j_VKQ];
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+ dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
+ }
+
+ if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
+ }
+}
+
+template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
+void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+template <int D, ggml_type type_K, ggml_type type_V>
+void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * KQV = dst;
+ ggml_tensor * Q = dst->src[0];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+ const int32_t precision = KQV->op_params[2];
+ GGML_ASSERT(precision == GGML_PREC_DEFAULT);
+
+ GGML_ASSERT(K->type == type_K);
+ GGML_ASSERT(V->type == type_V);
+
+ if (Q->ne[1] == 1) {
+ constexpr int cols_per_block = 1;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] == 2) {
+ constexpr int cols_per_block = 2;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 4) {
+ constexpr int cols_per_block = 4;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 8) {
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+ return;
+ }
+
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 1;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
+}
+
+#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
+ template void ggml_cuda_flash_attn_ext_vec_f32_case \
+ <D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+#include "common.cuh"
+#include "fattn-common.cuh"
+
+#if FP16_MMA_AVAILABLE
+#include <mma.h>
+#endif
+
+// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
+template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(nwarps*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_ext_f16(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+#if FP16_MMA_AVAILABLE
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
+
+ const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
+ static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
+ constexpr int frag_m = ncols == 8 ? 32 : 16;
+ constexpr int frag_n = ncols == 8 ? 8 : 16;
+ static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
+ typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
+ typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
+ typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
+ typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
+ typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
+
+ constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
+ constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
+ static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
+
+ // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
+ constexpr int D_padded = D + 8;
+ constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
+ constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
+ const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
+ const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
+ const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
+ const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
+
+ const int stride_Q = nb01 / sizeof(float);
+ const int stride_KV = nb11 / sizeof(half);
+
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
+ const half2 slope2 = make_half2(slopef, slopef);
+
+ frag_b Q_b[D/16][ncols/frag_n];
+
+ // A single buffer for temporarily holding tiles of KQ and VKQ parts:
+ constexpr int mem_KQ = ncols*kqs_padded*kqar;
+ constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
+ __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
+ float * KQ_f = (float *) KQ;
+ half2 * KQ2 = (half2 *) KQ;
+
+ float KQ_rowsum_f[ncols/nwarps] = {0.0f};
+ float KQ_max_f[ncols/nwarps];
+ float KQ_max_scale_f[ncols/nwarps] = {0.0f};
+
+#pragma unroll
+ for (int j = 0; j < ncols/nwarps; ++j) {
+ KQ_max_f[j] = -FLT_MAX/2.0f;
+ }
+
+ half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
+ half2 KQ_max_h2[ncols/nwarps];
+ half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
+
+#pragma unroll
+ for (int j = 0; j < ncols/nwarps; ++j) {
+ KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
+ }
+
+ __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
+ half2 * VKQ2 = (half2 *) VKQ;
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D/2 && i >= D/2) {
+ break;
+ }
+ VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
+ }
+ }
+
+ // Convert Q to half and apply scale, temporarily store in KQ:
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D && i >= D) {
+ break;
+ }
+ KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
+ }
+ }
+
+ __syncthreads();
+
+ // Load Q into tensor core fragments/registers since it will be used frequently:
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += 16) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
+ }
+ }
+
+ __syncthreads();
+
+ // Iterate over ne11 == previous tokens:
+ for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
+ // Calculate tile of KQ:
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
+ frag_c_KQ KQ_c[ncols/frag_n];
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
+ }
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
+ frag_a_K K_a;
+ nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
+ }
+ }
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
+ }
+ }
+
+ __syncthreads();
+
+ // Calculate softmax for each KQ column using the current max. value.
+ // The divisor is stored in KQ_rowsum and will be applied at the end.
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (std::is_same<KQ_acc_t, float>::value) {
+ float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
+ }
+
+ float KQ_max_new = KQ_max_f[j0/nwarps];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
+ KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
+ }
+ KQ_max_new = warp_reduce_max(KQ_max_new);
+
+ const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
+ KQ_max_scale_f[j0/nwarps] = expf(diff);
+ if (diff <= SOFTMAX_FTZ_THRESHOLD) {
+ KQ_max_scale_f[j0/nwarps] = 0.0f;
+ }
+ KQ_max_f[j0/nwarps] = KQ_max_new;
+
+ float KQ_rowsum_add = 0.0f;
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
+ KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
+ if (diff <= SOFTMAX_FTZ_THRESHOLD) {
+ KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
+ }
+ KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
+ KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
+ }
+ KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
+
+ // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
+ KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
+ } else {
+ half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
+ }
+
+ half2 KQ_max_new = KQ_max_h2[j0/nwarps];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
+ KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
+ }
+ KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
+ const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
+ KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
+ const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
+ *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
+ KQ_max_h2[j0/nwarps] = KQ_max_new;
+
+ half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
+ KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
+ const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
+ *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
+ KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
+ KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
+ }
+ KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
+
+ // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
+ KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
+ }
+ }
+
+ __syncthreads();
+
+ frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
+ const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
+ nvcuda::wmma::load_matrix_sync(
+ KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
+ KQ + j0*(kqar*kqs_padded) + k,
+ kqar*kqs_padded);
+ }
+ }
+
+ frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
+#pragma unroll
+ for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
+ }
+
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
+ const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
+
+ frag_a_V v_a;
+ nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
+ }
+ }
+ }
+
+ __syncthreads();
+
+ const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::store_matrix_sync(
+ KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
+ VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
+ D_padded, nvcuda::wmma::mem_col_major);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ half2 VKQ_scale;
+ if (std::is_same<KQ_acc_t, float>::value) {
+ VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
+ } else {
+ VKQ_scale = KQ_max_scale_h2[j0/nwarps];
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D/2 && i >= D/2) {
+ break;
+ }
+
+ half2 VKQ_add = make_half2(0.0f, 0.0f);
+#pragma unroll
+ for (int l = 0; l < VKQ_ratio; ++l) {
+ VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
+ }
+ VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j_VKQ = j0 + threadIdx.y;
+ if (ic0 + j_VKQ >= ne01) {
+ return;
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+
+ float KQ_rowsum_j;
+ if (std::is_same<KQ_acc_t, float>::value) {
+ KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
+ } else {
+ KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D && i >= D) {
+ break;
+ }
+ float dst_val = VKQ[j_VKQ*D_padded + i];
+ if (parallel_blocks == 1) {
+ dst_val /= KQ_rowsum_j;
+ }
+ dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
+ }
+
+ if (parallel_blocks == 1 || threadIdx.x != 0) {
+ continue;
+ }
+
+ float2 dst_meta_val;
+ if (std::is_same<KQ_acc_t, float>::value) {
+ dst_meta_val.x = KQ_max_f[j0/nwarps];
+ } else {
+ dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
+ }
+ dst_meta_val.y = KQ_rowsum_j;
+ dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
+ }
+#else
+ NO_DEVICE_CODE;
+#endif // FP16_MMA_AVAILABLE
+}
+
+constexpr int get_max_power_of_2(int x) {
+ return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
+}
+
+static_assert(get_max_power_of_2(1) == 1, "Test failed.");
+static_assert(get_max_power_of_2(2) == 2, "Test failed.");
+static_assert(get_max_power_of_2(4) == 4, "Test failed.");
+static_assert(get_max_power_of_2(6) == 2, "Test failed.");
+
+// Number of VKQ rows calculated in parallel:
+constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
+ return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
+}
+
+static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
+static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
+static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
+static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
+static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
+static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
+
+template <int D, int cols_per_block, typename KQ_acc_t>
+void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
+
+ constexpr int nwarps = 4;
+
+ constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
+ const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
+ const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
+
+ if (4*blocks_num_pb1 < 2*nsm) {
+ constexpr int parallel_blocks = 4;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ return;
+ }
+ if (2*blocks_num_pb1 < 2*nsm) {
+ constexpr int parallel_blocks = 2;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ return;
+ }
+ constexpr int parallel_blocks = 1;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
+ launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
+ template void ggml_cuda_flash_attn_ext_wmma_f16_case \
+ <D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
+// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
#include "fattn-tile-f32.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
+#include "fattn-wmma-f16.cuh"
#include "fattn.cuh"
#include <cstdint>
-#if FP16_MMA_AVAILABLE
-#include <mma.h>
-#endif
-
-// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
-template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(nwarps*WARP_SIZE, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_ext_f16(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
-#if FP16_MMA_AVAILABLE
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-
- const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
- static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
- constexpr int frag_m = ncols == 8 ? 32 : 16;
- constexpr int frag_n = ncols == 8 ? 8 : 16;
- static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
-
- constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
- constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
- static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
-
- // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
- constexpr int D_padded = D + 8;
- constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
- constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
- const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
-
- const int stride_Q = nb01 / sizeof(float);
- const int stride_KV = nb11 / sizeof(half);
-
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- const half slopeh = __float2half(slopef);
- const half2 slope2 = make_half2(slopef, slopef);
-
- frag_b Q_b[D/16][ncols/frag_n];
-
- // A single buffer for temporarily holding tiles of KQ and VKQ parts:
- constexpr int mem_KQ = ncols*kqs_padded*kqar;
- constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
- __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
- float * KQ_f = (float *) KQ;
- half2 * KQ2 = (half2 *) KQ;
-
- float KQ_rowsum_f[ncols/nwarps] = {0.0f};
- float KQ_max_f[ncols/nwarps];
- float KQ_max_scale_f[ncols/nwarps] = {0.0f};
-
-#pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_f[j] = -FLT_MAX/2.0f;
- }
-
- half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
- half2 KQ_max_h2[ncols/nwarps];
- half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
-
-#pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
- }
-
- __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
- half2 * VKQ2 = (half2 *) VKQ;
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
- VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
- }
- }
-
- // Convert Q to half and apply scale, temporarily store in KQ:
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
- break;
- }
- KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
- }
- }
-
- __syncthreads();
-
- // Load Q into tensor core fragments/registers since it will be used frequently:
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += 16) {
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
- }
- }
-
- __syncthreads();
-
- // Iterate over ne11 == previous tokens:
- for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
- // Calculate tile of KQ:
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
- frag_c_KQ KQ_c[ncols/frag_n];
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
- }
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
- frag_a_K K_a;
- nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
- }
- }
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
- }
- }
-
- __syncthreads();
-
- // Calculate softmax for each KQ column using the current max. value.
- // The divisor is stored in KQ_rowsum and will be applied at the end.
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-
- if (std::is_same<KQ_acc_t, float>::value) {
- float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
- }
-
- float KQ_max_new = KQ_max_f[j0/nwarps];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
- KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = warp_reduce_max(KQ_max_new);
-
- const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
- KQ_max_scale_f[j0/nwarps] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_max_scale_f[j0/nwarps] = 0.0f;
- }
- KQ_max_f[j0/nwarps] = KQ_max_new;
-
- float KQ_rowsum_add = 0.0f;
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
- KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
- }
- KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
- KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
-
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
- } else {
- half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
- }
-
- half2 KQ_max_new = KQ_max_h2[j0/nwarps];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
- KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
- const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
- KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
- KQ_max_h2[j0/nwarps] = KQ_max_new;
-
- half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
- KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
- KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
- KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
-
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
- }
- }
-
- __syncthreads();
-
- frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
- nvcuda::wmma::load_matrix_sync(
- KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
- KQ + j0*(kqar*kqs_padded) + k,
- kqar*kqs_padded);
- }
- }
-
- frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
-#pragma unroll
- for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
- }
-
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
-
- frag_a_V v_a;
- nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
- }
- }
- }
-
- __syncthreads();
-
- const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync(
- KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
- VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
- D_padded, nvcuda::wmma::mem_col_major);
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-
- half2 VKQ_scale;
- if (std::is_same<KQ_acc_t, float>::value) {
- VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
- } else {
- VKQ_scale = KQ_max_scale_h2[j0/nwarps];
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
-
- half2 VKQ_add = make_half2(0.0f, 0.0f);
-#pragma unroll
- for (int l = 0; l < VKQ_ratio; ++l) {
- VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
- }
- VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
- }
- }
-
- __syncthreads();
- }
-
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j_VKQ = j0 + threadIdx.y;
- if (ic0 + j_VKQ >= ne01) {
- return;
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
-
- float KQ_rowsum_j;
- if (std::is_same<KQ_acc_t, float>::value) {
- KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
- } else {
- KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
- break;
- }
- float dst_val = VKQ[j_VKQ*D_padded + i];
- if (parallel_blocks == 1) {
- dst_val /= KQ_rowsum_j;
- }
- dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
- }
-
- if (parallel_blocks == 1 || threadIdx.x != 0) {
- continue;
- }
-
- float2 dst_meta_val;
- if (std::is_same<KQ_acc_t, float>::value) {
- dst_meta_val.x = KQ_max_f[j0/nwarps];
- } else {
- dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
- }
- dst_meta_val.y = KQ_rowsum_j;
- dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
- }
-#else
- NO_DEVICE_CODE;
-#endif // FP16_MMA_AVAILABLE
-}
-
-constexpr int get_max_power_of_2(int x) {
- return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
-}
-
-static_assert(get_max_power_of_2(1) == 1, "Test failed.");
-static_assert(get_max_power_of_2(2) == 2, "Test failed.");
-static_assert(get_max_power_of_2(4) == 4, "Test failed.");
-static_assert(get_max_power_of_2(6) == 2, "Test failed.");
-
-// Number of VKQ rows calculated in parallel:
-constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
- return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
-}
-
-static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
-static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
-static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
-static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
-static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
-static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
-
-template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
-void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
-
- constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
- const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
- const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
-
- if (4*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 4;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- return;
- }
- if (2*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 2;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- return;
- }
- constexpr int parallel_blocks = 1;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
-}
-
-void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
- ggml_cuda_set_device(ctx.device);
- const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
- // On AMD the tile kernels perform poorly, use the vec kernel instead:
- if (cc >= CC_OFFSET_AMD) {
- if (precision == GGML_PREC_DEFAULT) {
- ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
- } else {
- ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
- }
- return;
- }
-
- if (!fast_fp16_available(cc)) {
- if (Q->ne[1] <= 8) {
- ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
- } else {
- ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
- }
- return;
- }
-
- if (!fp16_mma_available(cc)) {
- if (Q->ne[1] <= 8) {
- ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
- } else {
- ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
- }
- return;
- }
-
if (precision != GGML_PREC_DEFAULT) {
- if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
- ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
- return;
- }
-
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
constexpr int cols_per_block = 16;
- constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
break;
default:
GGML_ASSERT(false);
}
} else {
constexpr int cols_per_block = 32;
- constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
break;
// case 256:
- // launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
+ // ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
// break;
default:
GGML_ASSERT(false);
return;
}
- if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
- ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
- return;
- }
-
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
constexpr int cols_per_block = 8;
- constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;
- constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
}
constexpr int cols_per_block = 32;
- constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
break;
case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
break;
case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
break;
case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
break;
case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
break;
case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
break;
}
- return;
+}
+#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
+ if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
+ ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
+ return; \
+ } \
+
+static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * Q = dst->src[1];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+#ifdef GGML_CUDA_FA_ALL_QUANTS
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+
+ FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#else
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#endif // GGML_CUDA_FA_ALL_QUANTS
+
+ on_no_fattn_vec_case(Q->ne[0]);
+}
+
+#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
+ if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
+ ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
+ return; \
+ } \
+
+static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * Q = dst->src[1];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+#ifdef GGML_CUDA_FA_ALL_QUANTS
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+
+ FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#else
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#endif // GGML_CUDA_FA_ALL_QUANTS
+
+ on_no_fattn_vec_case(Q->ne[0]);
+}
+
+void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
+ const ggml_tensor * K = dst->src[1];
+ const ggml_tensor * V = dst->src[2];
+
+ ggml_cuda_set_device(ctx.device);
+ const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
+ const int32_t precision = KQV->op_params[2];
+
+ const bool quantized_KV = ggml_is_quantized(K->type) || ggml_is_quantized(V->type);
+
+ // On AMD the tile kernels perform poorly, use the vec kernel instead:
+ if (cc >= CC_OFFSET_AMD || quantized_KV) {
+ if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
+ } else {
+ ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
+ }
+ return;
+ }
+
+ if (!fast_fp16_available(cc)) {
+ if (Q->ne[1] <= 8) {
+ ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
+ } else {
+ ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
+ }
+ return;
+ }
+
+ if (!fp16_mma_available(cc)) {
+ if (Q->ne[1] <= 8) {
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
+ } else {
+ ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
+ }
+ return;
+ }
+
+ if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
+ if (precision == GGML_PREC_DEFAULT) {
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
+ return;
+ } else if(Q->ne[0] <= 128) {
+ ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
+ return;
+ }
+ }
+
+ ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
}
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
}
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+ return vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+ return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
}
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 16, float);
+DECL_FATTN_WMMA_F16_CASE(80, 16, float);
+DECL_FATTN_WMMA_F16_CASE(96, 16, float);
+DECL_FATTN_WMMA_F16_CASE(112, 16, float);
+DECL_FATTN_WMMA_F16_CASE(128, 16, float);
+DECL_FATTN_WMMA_F16_CASE(256, 16, float);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 32, float);
+DECL_FATTN_WMMA_F16_CASE(80, 32, float);
+DECL_FATTN_WMMA_F16_CASE(96, 32, float);
+DECL_FATTN_WMMA_F16_CASE(112, 32, float);
+DECL_FATTN_WMMA_F16_CASE(128, 32, float);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 16, half);
+DECL_FATTN_WMMA_F16_CASE(80, 16, half);
+DECL_FATTN_WMMA_F16_CASE(96, 16, half);
+DECL_FATTN_WMMA_F16_CASE(112, 16, half);
+DECL_FATTN_WMMA_F16_CASE(128, 16, half);
+DECL_FATTN_WMMA_F16_CASE(256, 16, half);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 32, half);
+DECL_FATTN_WMMA_F16_CASE(80, 32, half);
+DECL_FATTN_WMMA_F16_CASE(96, 32, half);
+DECL_FATTN_WMMA_F16_CASE(112, 32, half);
+DECL_FATTN_WMMA_F16_CASE(128, 32, half);
+DECL_FATTN_WMMA_F16_CASE(256, 32, half);
--- /dev/null
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 8, half);
+DECL_FATTN_WMMA_F16_CASE(96, 8, half);
+DECL_FATTN_WMMA_F16_CASE(128, 8, half);
+DECL_FATTN_WMMA_F16_CASE(256, 8, half);
--- /dev/null
+#!/usr/bin/env python3
+
+from glob import glob
+import os
+
+TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
+
+SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
+
+#include "../fattn-vec-f{vkq_size}.cuh"
+
+DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
+"""
+
+SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+"""
+
+SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
+
+
+def get_short_name(long_quant_name):
+ return long_quant_name.replace("GGML_TYPE_", "").lower()
+
+
+def get_head_sizes(type_k, type_v):
+ if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
+ return [64, 128, 256]
+ if type_k == "GGML_TYPE_F16":
+ return [64, 128]
+ return [128]
+
+
+for filename in glob("*.cu"):
+ os.remove(filename)
+
+for vkq_size in [16, 32]:
+ for type_k in TYPES_KV:
+ for type_v in TYPES_KV:
+ for head_size in get_head_sizes(type_k, type_v):
+ with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
+ f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
+
+for kq_acc_t in ["half", "float"]:
+ for cols_per_block in [8, 16, 32]:
+ if kq_acc_t == "float" and cols_per_block == 8:
+ continue
+
+ with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
+ f.write(SOURCE_FATTN_WMMA_START)
+
+ for head_size in [64, 80, 96, 112, 128, 256]:
+ if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
+ continue
+ if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
+ continue
+ f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
+template <typename T, int vdr> static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl(
+ const int * v, const int * u, const T & d8_0, const T & d8_1) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
int sumi = 0;
sumi = __dp4a(v[i], u[i], sumi);
}
- return d8_0*d8_1 * sumi;
+ return d8_0*d8_1 * ((T) sumi);
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
}
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
+ return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
case GGML_OP_LEAKY_RELU:
return true;
case GGML_OP_FLASH_ATTN_EXT:
+ if (op->src[1]->type != GGML_TYPE_F16) {
+ return false;
+ }
+ if (op->src[2]->type != GGML_TYPE_F16) {
+ return false;
+ }
if (op->src[0]->ne[0] == 256) {
return false;
}
const float max_bias; // ALiBi
+ const ggml_type type_KV;
+
std::string vars() override {
- return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias);
+ return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
}
double max_nmse_err() override {
return 5e-4;
}
- test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f)
- : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {}
+ test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
+ : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
- ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
- ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
+ ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1);
+ ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1);
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
return out;
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias));
+ for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
+ test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
+ }
}
}
}