set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
- add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
+ add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()
file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp")
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
-
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
-
- const int tid = item_ct1.get_local_id(2);
- const int rowx = item_ct1.get_group(2);
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
-
- const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
-
- const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
-
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = rowx/nrows_y; // head index
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = sycl::pow(base, float(exp));
- }
-
- float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
-
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
-
- const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
-
- vals[col] = val;
- max_val = sycl::max(max_val, val);
- }
-
- // find the max value in the block
- max_val = warp_reduce_max(max_val, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val, item_ct1);
- }
-
- float tmp = 0.f;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const float val = sycl::native::exp(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
-
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- const float inv_sum = 1.f / tmp;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
-
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
-}
-
static void scale_f32(const float * x, float * dst, const float scale, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
});
}
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
- const size_t n_local_scratch, queue_ptr stream) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
- soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
- nrows_y, scale, max_bias, m0,
- m1, n_head_log2, item_ct1,
- local_buf_acc.get_pointer());
- });
- });
-}
-
-static void soft_max_f32_sycl(const float * x, const float * mask,
- float * dst, const int ncols_x, const int nrows_x,
- const int nrows_y, const float scale, const float max_bias,
- queue_ptr stream, int device) {
- int nth = WARP_SIZE;
- int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
- while (nth < ncols_x && nth < max_block_size) nth *= 2;
- if (nth>max_block_size) nth = max_block_size;
-
- const sycl::range<3> block_dims(1, 1, nth);
- const sycl::range<3> block_nums(1, 1, nrows_x);
- const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
-
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
- if (n_local_scratch*sizeof(float) < local_mem_size) {
- if (ncols_x > max_block_size) {
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- return;
- }
- switch (ncols_x) {
- case 32:
- soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 64:
- soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 128:
- soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 256:
- soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 512:
- soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 1024:
- soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 2048:
- soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 4096:
- soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- default:
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- }
- } else {
- soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, WARP_SIZE, stream);
- }
-}
-
template <typename T>
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
int OW, int OH, int KW, int KH, int IC,
(void) src1_dd;
}
-inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
-#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
-
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
-
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
- nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
-}
-
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
+ int dim = op->op_params[0];
+ return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2;
} break;
case GGML_OP_DUP:
case GGML_OP_NONE:
#include "mmvq.hpp"
#include "rope.hpp"
#include "norm.hpp"
+#include "softmax.hpp"
#endif // GGML_SYCL_BACKEND_HPP
#include "dequantize.hpp"
#include "presets.hpp"
+
static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
const sycl::half *x = (const sycl::half *)vx;
// sum up partial sums and write back result
#pragma unroll
- for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, WARP_SIZE);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, WARP_SIZE);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, WARP_SIZE);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, WARP_SIZE);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int nwarps = nthreads / WARP_SIZE;
assert(nwarps % WARP_SIZE == 0);
start += item_ct1.get_local_id(2);
+ int nreduce = nwarps / WARP_SIZE;
if (end >= ne_elements) {
end = ne_elements;
*/
item_ct1.barrier();
tmp = 0.f;
- int nreduce = nwarps / WARP_SIZE;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
better performance if there is no access to global memory.
*/
item_ct1.barrier();
- tmp = s_sum[lane_id];
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
tmp = warp_reduce_sum(tmp, item_ct1);
}
#define MUL_MAT_SRC1_COL_STRIDE 128
+#define QK_WARP_SIZE 32
#endif // GGML_SYCL_PRESETS_HPP
--- /dev/null
+#include "norm.hpp"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+ const int tid = item_ct1.get_local_id(2);
+ const int rowx = item_ct1.get_group(2);
+ const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
+
+ const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
+
+ const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ const int nthreads = block_size;
+ const int nwarps = nthreads / WARP_SIZE;
+ int nreduce = nwarps / WARP_SIZE;
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const uint32_t h = rowx/nrows_y; // head index
+
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = sycl::pow(base, float(exp));
+ }
+
+ float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
+ float max_val = -INFINITY;
+
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
+
+ const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
+
+ vals[col] = val;
+ max_val = sycl::max(max_val, val);
+ }
+
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val, item_ct1);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf[lane_id] = -INFINITY;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = -INFINITY;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = max_val;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ max_val = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
+ }
+ max_val = warp_reduce_max(max_val, item_ct1);
+ }
+
+ float tmp = 0.f;
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const float val = sycl::native::exp(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
+
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ if (warp_id == 0) {
+ buf[lane_id] = 0.f;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = 0.f;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = tmp;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ tmp = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ tmp += buf[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ const float inv_sum = 1.f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
+}
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
+ const size_t n_local_scratch, queue_ptr stream) {
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
+ nrows_y, scale, max_bias, m0,
+ m1, n_head_log2, item_ct1,
+ local_buf_acc.get_pointer());
+ });
+ });
+}
+
+static void soft_max_f32_sycl(const float * x, const float * mask,
+ float * dst, const int ncols_x, const int nrows_x,
+ const int nrows_y, const float scale, const float max_bias,
+ queue_ptr stream, int device) {
+ int nth = WARP_SIZE;
+ int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
+ while (nth < ncols_x && nth < max_block_size) nth *= 2;
+ if (nth>max_block_size) nth = max_block_size;
+
+ const sycl::range<3> block_dims(1, 1, nth);
+ const sycl::range<3> block_nums(1, 1, nrows_x);
+ const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
+
+ const uint32_t n_head_kv = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
+ if (n_local_scratch*sizeof(float) < local_mem_size) {
+ if (ncols_x > max_block_size) {
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ return;
+ }
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 64:
+ soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 128:
+ soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 256:
+ soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 512:
+ soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 1024:
+ soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 2048:
+ soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 4096:
+ soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ default:
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ }
+ } else {
+ soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, WARP_SIZE, stream);
+ }
+}
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
+#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, dst->op_params + 1, sizeof(float));
+
+ soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
+ nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+}
--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_SOFTMAX_HPP
+#define GGML_SYCL_SOFTMAX_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream);
+
+#endif // GGML_SYCL_SOFTMAX_HPP