+#include "llama_util.h"
#include "llama.h"
+#include "llama_internal.h"
#include "ggml.h"
+#include <array>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
-#include <regex>
#include <cassert>
#include <cstring>
+#include <climits>
+#include <memory>
+#include <algorithm>
+#include <initializer_list>
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
-#define LLAMA_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
-
-
-// determine number of model parts based on the dimension
-static const std::unordered_map<int, int> LLAMA_N_PARTS = {
- { 4096, 1 },
- { 5120, 2 },
- { 6656, 4 },
- { 8192, 8 },
-};
// available llama models
enum e_model {
// default hparams (LLaMA 7B)
struct llama_hparams {
- int32_t n_vocab = 32000;
- int32_t n_ctx = 512; // this is provided as user input?
- int32_t n_embd = 4096;
- int32_t n_mult = 256;
- int32_t n_head = 32;
- int32_t n_layer = 32;
- int32_t n_rot = 64;
- int32_t f16 = 1;
+ uint32_t n_vocab = 32000;
+ uint32_t n_ctx = 512; // this is provided as user input?
+ uint32_t n_embd = 4096;
+ uint32_t n_mult = 256;
+ uint32_t n_head = 32;
+ uint32_t n_layer = 32;
+ uint32_t n_rot = 64;
+ uint32_t f16 = 1;
+
+ bool operator!=(const llama_hparams & other) const {
+ return memcmp(this, &other, sizeof(llama_hparams));
+ }
};
struct llama_layer {
struct ggml_tensor * k;
struct ggml_tensor * v;
- struct ggml_context * ctx;
+ struct ggml_context * ctx = NULL;
- std::vector<uint8_t> buf;
+ llama_buffer buf;
int n; // number of tokens currently in the cache
+
+ ~llama_kv_cache() {
+ if (ctx) {
+ ggml_free(ctx);
+ }
+ }
};
struct llama_model {
std::vector<llama_layer> layers;
// context
- struct ggml_context * ctx;
+ struct ggml_context * ctx = NULL;
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self;
// the model memory buffer
- std::vector<uint8_t> buf;
+ llama_buffer buf;
+
+ // model memory mapped file
+ std::unique_ptr<llama_mmap> mapping;
+
+ // objects representing data potentially being locked in memory
+ llama_mlock mlock_buf;
+ llama_mlock mlock_mmap;
- // tensors
- int n_loaded;
- std::unordered_map<std::string, struct ggml_tensor *> tensors;
+ // for quantize-stats only
+ std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
+
+ ~llama_model() {
+ if (ctx) {
+ ggml_free(ctx);
+ }
+ }
};
struct llama_vocab {
int64_t t_load_us = 0;
int64_t t_start_us = 0;
+ bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
// memory buffers used to evaluate the model
// TODO: move in llama_state
- std::vector<uint8_t> buf_compute;
- std::vector<uint8_t> buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
+ llama_buffer buf_compute;
+ llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), });
+ last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
}
if (buf_last >= 0) {
}
};
+template <typename T>
+static T checked_mul(T a, T b) {
+ T ret = a * b;
+ if (a != 0 && ret / a != b) {
+ throw format("overflow multiplying %llu * %llu",
+ (unsigned long long) a, (unsigned long long) b);
+ }
+ return ret;
+}
+
+static size_t checked_div(size_t a, size_t b) {
+ if (b == 0 || a % b != 0) {
+ throw format("error dividing %zu / %zu", a, b);
+ }
+ return a / b;
+}
+
+static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
+ std::string ret = "[" + std::to_string(ne.at(0));
+ for (size_t i = 1; i < ne.size(); i++) {
+ ret += " x " + std::to_string(ne.at(i));
+ }
+ ret += "]";
+ return ret;
+}
+
+static const char * llama_format_type(enum ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_F32: return "f32";
+ case GGML_TYPE_F16: return "f16";
+ case GGML_TYPE_Q4_0: return "q4_0";
+ case GGML_TYPE_Q4_1: return "q4_1";
+ default: LLAMA_ASSERT(false);
+ }
+}
+
+static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
+ size_t size = ggml_type_size(type);
+ for (uint32_t dim : ne) {
+ size = checked_mul<size_t>(size, dim);
+ }
+ return size / ggml_blck_size(type);
+}
+
+struct llama_load_tensor_shard {
+ std::vector<uint32_t> ne;
+ size_t size;
+ enum ggml_type type;
+ size_t file_idx;
+ size_t file_off;
+
+ void calc_size() {
+ size = llama_calc_tensor_size(ne, type);
+ }
+};
+
+enum llama_split_type {
+ SPLIT_NONE,
+ SPLIT_BY_COLUMNS,
+ SPLIT_BY_ROWS
+};
+
+struct llama_load_tensor {
+ std::vector<llama_load_tensor_shard> shards;
+
+ std::string name;
+ enum ggml_type type = GGML_TYPE_F32;
+ llama_split_type split_type = SPLIT_NONE;
+ std::vector<uint32_t> ne;
+ size_t size;
+ struct ggml_tensor * ggml_tensor = NULL;
+ uint8_t * data;
+
+ llama_load_tensor(const std::string & name) : name(name) {}
+
+ void calc_all() {
+ calc_type();
+ calc_split_type();
+ calc_ne();
+ calc_size();
+ }
+
+ void calc_type() {
+ const auto & first_shard = shards.at(0);
+ for (const auto & shard : shards) {
+ if (shard.type != first_shard.type) {
+ throw format("inconsistent tensor shard type in '%s'", name.c_str());
+ }
+ }
+ type = first_shard.type;
+ }
+
+ void calc_split_type() {
+ if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
+ shards.size() == 1) { // only one file?
+ split_type = SPLIT_NONE;
+ } else if (name.find("tok_embeddings.") == 0 ||
+ name.find(".attention.wo.weight") != std::string::npos ||
+ name.find(".feed_forward.w2.weight") != std::string::npos) {
+ split_type = SPLIT_BY_COLUMNS;
+ } else {
+ split_type = SPLIT_BY_ROWS;
+ }
+ }
+
+ void calc_ne() {
+ const auto & first_shard = shards.at(0);
+ for (const auto & shard : shards) {
+ if (shard.ne != first_shard.ne) {
+ throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
+ name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
+ }
+ }
+ ne = first_shard.ne;
+ LLAMA_ASSERT(shards.size() <= UINT32_MAX);
+ uint32_t n_shards = (uint32_t) shards.size();
+ switch (split_type) {
+ case SPLIT_NONE:
+ ne = first_shard.ne;
+ break;
+ case SPLIT_BY_COLUMNS:
+ ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
+ first_shard.ne[1]};
+ break;
+ case SPLIT_BY_ROWS:
+ ne = {first_shard.ne[0],
+ checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
+ break;
+ }
+ }
+
+ void calc_size() {
+ size = llama_calc_tensor_size(ne, type);
+ }
+};
+
+struct llama_load_tensors_map {
+ // tensors is kept in a separate vector to preserve file order
+ std::vector<llama_load_tensor> tensors;
+ std::unordered_map<std::string, size_t> name_to_idx;
+};
+
+enum llama_file_version {
+ LLAMA_FILE_VERSION_GGML,
+ LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
+ LLAMA_FILE_VERSION_GGJT_V1, // added padding
+};
+
+struct llama_file_loader {
+ llama_file file;
+ llama_file_version file_version;
+ llama_hparams hparams;
+ llama_vocab vocab;
+
+ llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
+ : file(fname, "rb") {
+ fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
+ read_magic();
+ read_hparams();
+ read_vocab();
+ read_tensor_metadata(file_idx, tensors_map);
+ }
+ void read_magic() {
+ uint32_t magic = file.read_u32();
+ uint32_t version = 0;
+
+ if (magic != 'ggml') {
+ version = file.read_u32();
+ }
+
+ if (magic == 'ggml' && version == 0) {
+ file_version = LLAMA_FILE_VERSION_GGML;
+ } else if (magic == 'ggmf' && version == 1) {
+ file_version = LLAMA_FILE_VERSION_GGMF_V1;
+ } else if (magic == 'ggjt' && version == 1) {
+ file_version = LLAMA_FILE_VERSION_GGJT_V1;
+ } else {
+ throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
+ magic, version);
+ }
+ }
+ void read_hparams() {
+ hparams.n_vocab = file.read_u32();
+ hparams.n_embd = file.read_u32();
+ hparams.n_mult = file.read_u32();
+ hparams.n_head = file.read_u32();
+ hparams.n_layer = file.read_u32();
+ hparams.n_rot = file.read_u32();
+ hparams.f16 = file.read_u32();
+ }
+ void read_vocab() {
+ vocab.id_to_token.resize(hparams.n_vocab);
+
+ for (uint32_t i = 0; i < hparams.n_vocab; i++) {
+ uint32_t len = file.read_u32();
+ std::string word = file.read_string(len);
+
+ float score = 0.0f;
+ if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
+ file.read_raw(&score, sizeof(score));
+ }
+
+ vocab.token_to_id[word] = i;
+
+ auto & tok_score = vocab.id_to_token[i];
+ tok_score.tok = std::move(word);
+ tok_score.score = score;
+ }
+ }
+ void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
+ while (file.tell() < file.size) {
+ llama_load_tensor_shard shard;
+ uint32_t n_dims = file.read_u32();
+ uint32_t name_len = file.read_u32();
+ uint32_t ftype = file.read_u32();
+ shard.ne.resize(n_dims);
+ file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
+ std::string name = file.read_string(name_len);
+ if (n_dims < 1 || n_dims > 2) {
+ throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
+ }
+ switch (ftype) {
+ case 0: shard.type = GGML_TYPE_F32; break;
+ case 1: shard.type = GGML_TYPE_F16; break;
+ case 2: shard.type = GGML_TYPE_Q4_0; break;
+ case 3: shard.type = GGML_TYPE_Q4_1; break;
+ default: {
+ throw format("unrecognized ftype %u\n", ftype);
+ }
+ }
+
+ if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
+ // skip to the next multiple of 32 bytes
+ file.seek(-file.tell() & 31, SEEK_CUR);
+ }
+ shard.file_idx = file_idx;
+ shard.file_off = file.tell();
+
+ shard.calc_size();
+ file.seek(shard.size, SEEK_CUR);
+
+ auto it = tensors_map.name_to_idx.find(name);
+ size_t idx;
+ if (it != tensors_map.name_to_idx.end()) {
+ idx = it->second;
+ } else {
+ tensors_map.tensors.emplace_back(name);
+ idx = tensors_map.tensors.size() - 1;
+ tensors_map.name_to_idx.emplace(name, idx);
+ }
+ tensors_map.tensors.at(idx).shards.push_back(shard);
+ }
+ }
+};
+
+struct llama_file_saver {
+ llama_file file;
+ llama_file_loader * any_file_loader;
+ llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16)
+ : file(fname, "wb"), any_file_loader(any_file_loader) {
+ fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
+ write_magic();
+ write_hparams(new_f16);
+ write_vocab();
+ }
+ void write_magic() {
+ file.write_u32('ggjt'); // magic
+ file.write_u32(1); // version
+ }
+ void write_hparams(uint32_t new_f16) {
+ const llama_hparams & hparams = any_file_loader->hparams;
+ file.write_u32(hparams.n_vocab);
+ file.write_u32(hparams.n_embd);
+ file.write_u32(hparams.n_mult);
+ file.write_u32(hparams.n_head);
+ file.write_u32(hparams.n_layer);
+ file.write_u32(hparams.n_rot);
+ file.write_u32(new_f16);
+ }
+ void write_vocab() {
+ if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
+ fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
+ }
+ uint32_t n_vocab = any_file_loader->hparams.n_vocab;
+ for (uint32_t i = 0; i < n_vocab; i++) {
+ const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
+ file.write_u32((uint32_t) token_score.tok.size());
+ file.write_raw(token_score.tok.data(), token_score.tok.size());
+ file.write_raw(&token_score.score, sizeof(token_score.score));
+ }
+ }
+ void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
+ uint32_t ftype;
+ switch (new_type) {
+ case GGML_TYPE_F32: ftype = 0; break;
+ case GGML_TYPE_F16: ftype = 1; break;
+ case GGML_TYPE_Q4_0: ftype = 2; break;
+ case GGML_TYPE_Q4_1: ftype = 3; break;
+ default: LLAMA_ASSERT(false);
+ }
+ file.write_u32((uint32_t) tensor.ne.size());
+ file.write_u32((uint32_t) tensor.name.size());
+ file.write_u32(ftype);
+ file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
+ file.write_raw(tensor.name.data(), tensor.name.size());
+ file.seek(-file.tell() & 31, SEEK_CUR);
+ LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
+ file.write_raw(new_data, new_size);
+ }
+};
+
+struct llama_model_loader {
+ std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
+ llama_load_tensors_map tensors_map;
+ bool use_mmap;
+ size_t num_ggml_tensors_created = 0;
+ struct ggml_context * ggml_ctx = NULL;
+ std::unique_ptr<llama_mmap> mapping;
+
+ llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
+ auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
+ file_loaders.emplace_back(first_file);
+ uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
+ for (uint32_t i = 1; i < n_parts; i++) {
+ std::string fname = fname_base + "." + std::to_string(i);
+ auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
+ file_loaders.emplace_back(ith_file);
+ if (ith_file->hparams != first_file->hparams) {
+ throw format("llama.cpp: hparams inconsistent between files");
+ }
+ }
+ if (!llama_mmap::SUPPORTED) {
+ use_mmap = false;
+ }
+ if (use_mmap && alignment_prevents_mmap()) {
+ fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
+ use_mmap = false;
+ }
+ this->use_mmap = use_mmap;
+ for (llama_load_tensor & lt : tensors_map.tensors) {
+ lt.calc_all();
+ }
+ }
+
+ bool alignment_prevents_mmap() {
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ for (const llama_load_tensor_shard & shard : lt.shards) {
+ if (shard.file_off & 3) {
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ uint32_t guess_n_parts() const {
+ auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
+ if (it == tensors_map.name_to_idx.end()) {
+ throw std::string("missing tok_embeddings.weight");
+ }
+ const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
+ return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
+ }
+
+ void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
+ *ctx_size_p = *mmapped_size_p = 0;
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
+ *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
+ }
+ }
+
+ struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
+ auto it = tensors_map.name_to_idx.find(name);
+ if (it == tensors_map.name_to_idx.end()) {
+ throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
+ }
+ llama_load_tensor & lt = tensors_map.tensors.at(it->second);
+ if (lt.ne != ne) {
+ throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
+ name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
+ }
+ return get_tensor_for(lt);
+ }
+
+ struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
+ struct ggml_tensor * tensor;
+ if (lt.ne.size() == 2) {
+ tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
+ } else {
+ LLAMA_ASSERT(lt.ne.size() == 1);
+ tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
+ }
+ LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
+ lt.ggml_tensor = tensor;
+ num_ggml_tensors_created++;
+ return tensor;
+ }
+
+ void done_getting_tensors() {
+ if (num_ggml_tensors_created != tensors_map.tensors.size()) {
+ throw std::string("llama.cpp: file contained more tensors than expected");
+ }
+ }
+
+ void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
+ size_t data_size = 0;
+ for (const llama_load_tensor & lt : tensors_map.tensors) {
+ data_size += lt.size;
+ }
+
+ if (use_mmap) {
+ mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
+ if (!lmlock) {
+ // Don't call the callback since the actual loading will be lazy
+ // and we can't measure it.
+ progress_callback = NULL;
+ }
+ if (lmlock) {
+ lmlock->init(mapping->addr);
+ }
+ }
+
+ size_t done_size = 0;
+ for (llama_load_tensor & lt : tensors_map.tensors) {
+ if (progress_callback) {
+ progress_callback((float) done_size / data_size, progress_callback_user_data);
+ }
+ LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
+ lt.data = (uint8_t *) lt.ggml_tensor->data;
+ load_data_for(lt);
+ lt.ggml_tensor->data = lt.data;
+ done_size += lt.size;
+ if (use_mmap && lmlock) {
+ lmlock->grow_to(done_size);
+ }
+ }
+ if (progress_callback) {
+ progress_callback(1.0f, progress_callback_user_data);
+ }
+ }
+
+ void load_data_for(llama_load_tensor & lt) {
+ if (use_mmap) {
+ LLAMA_ASSERT(lt.shards.size() == 1);
+ lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
+ } else if (lt.split_type == SPLIT_NONE) {
+ llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
+ file.seek(lt.shards.at(0).file_off, SEEK_SET);
+ file.read_raw(lt.data, lt.size);
+ } else if (lt.split_type == SPLIT_BY_ROWS) {
+ size_t offset = 0;
+ for (llama_load_tensor_shard & shard : lt.shards) {
+ llama_file & file = file_loaders.at(shard.file_idx)->file;
+ file.seek(shard.file_off, SEEK_SET);
+ file.read_raw(lt.data + offset, shard.size);
+ offset += shard.size;
+ }
+ LLAMA_ASSERT(offset == lt.size);
+ } else if (lt.split_type == SPLIT_BY_COLUMNS) {
+ // Let's load the data into temporary buffers to ensure the OS performs large loads.
+ std::vector<llama_buffer> tmp_bufs;
+ tmp_bufs.resize(lt.shards.size());
+ for (size_t i = 0; i < lt.shards.size(); i++) {
+ llama_load_tensor_shard & shard = lt.shards.at(i);
+ llama_file & file = file_loaders.at(shard.file_idx)->file;
+ file.seek(shard.file_off, SEEK_SET);
+ tmp_bufs.at(i).resize(shard.size);
+ file.read_raw(tmp_bufs.at(i).addr, shard.size);
+ }
+ // Then reshape.
+ size_t num_rows = lt.ne.at(1);
+ size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
+ size_t out_offset = 0;
+ for (size_t row = 0; row < num_rows; row++) {
+ for (llama_buffer & tmp_buf : tmp_bufs) {
+ memcpy(lt.data + out_offset,
+ tmp_buf.addr + row * per_shard_row_size,
+ per_shard_row_size);
+ out_offset += per_shard_row_size;
+ }
+ }
+ LLAMA_ASSERT(out_offset == lt.size);
+ }
+ if (0) {
+ print_checksum(lt);
+ }
+ }
+
+ static void print_checksum(llama_load_tensor & lt) {
+ uint32_t sum = 0;
+ for (size_t i = 0; i < lt.size; i++) {
+ uint8_t byte = lt.data[i];
+ sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
+ }
+ fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
+ llama_format_tensor_shape(lt.ne).c_str(), lt.size);
+ }
+
+};
+
+
//
// kv cache
//
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
- const int n_mem = n_layer*n_ctx;
- const int n_elements = n_embd*n_mem;
+ const int64_t n_mem = (int64_t)n_layer*n_ctx;
+ const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
struct ggml_init_params params;
- params.mem_size = cache.buf.size();
- params.mem_buffer = cache.buf.data();
+ params.mem_size = cache.buf.size;
+ params.mem_buffer = cache.buf.addr;
+ params.no_alloc = false;
cache.ctx = ggml_init(params);
return true;
}
-static void kv_cache_free(struct llama_kv_cache & cache) {
- if (cache.ctx) {
- ggml_free(cache.ctx);
- cache.ctx = nullptr;
- }
-}
-
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.n_ctx =*/ 512,
/*.f16_kv =*/ false,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
+ /*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
return result;
}
+bool llama_mmap_supported() {
+ return llama_mmap::SUPPORTED;
+}
+
+bool llama_mlock_supported() {
+ return llama_mlock::SUPPORTED;
+}
+
//
// model loading
//
-static bool llama_model_load(
+static const char *llama_file_version_name(llama_file_version version) {
+ switch (version) {
+ case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
+ case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
+ case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
+ default: LLAMA_ASSERT(false);
+ }
+}
+
+static const char *llama_model_type_name(e_model type) {
+ switch (type) {
+ case MODEL_7B: return "7B";
+ case MODEL_13B: return "13B";
+ case MODEL_30B: return "30B";
+ case MODEL_65B: return "65B";
+ default: LLAMA_ASSERT(false);
+ }
+}
+
+static void llama_model_load_internal(
const std::string & fname,
llama_context & lctx,
int n_ctx,
- int n_parts,
ggml_type memory_type,
+ bool use_mmap,
+ bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
-
- const int64_t t_start_us = ggml_time_us();
+ void * progress_callback_user_data) {
- lctx.t_start_us = t_start_us;
+ lctx.t_start_us = ggml_time_us();
- std::vector<char> f_buf(1024*1024);
+ std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
+ lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
auto & model = lctx.model;
- auto & vocab = lctx.vocab;
+ model.hparams = ml->file_loaders.at(0)->hparams;
+ llama_file_version file_version = ml->file_loaders.at(0)->file_version;
+ auto & hparams = model.hparams;
+ uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- auto fin = std::ifstream(fname, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
-
- // verify magic
{
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
- __func__, fname.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 60: model.type = e_model::MODEL_30B; break;
+ case 80: model.type = e_model::MODEL_65B; break;
}
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
-
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
- }
-
- int n_ff = 0;
-
- // load hparams
- {
- auto & hparams = model.hparams;
-
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
-
hparams.n_ctx = n_ctx;
-
- n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
-
- if (n_parts < 1) {
- n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
- }
-
- // temp warning to tell the user to use "--n_parts"
- if (hparams.f16 == 4 && n_parts != 1) {
- fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
- fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
- }
-
- if (hparams.n_layer == 32) {
- model.type = e_model::MODEL_7B;
- }
-
- if (hparams.n_layer == 40) {
- model.type = e_model::MODEL_13B;
- }
-
- if (hparams.n_layer == 60) {
- model.type = e_model::MODEL_30B;
- }
-
- if (hparams.n_layer == 80) {
- model.type = e_model::MODEL_65B;
- }
-
- fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
- fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
- fprintf(stderr, "%s: type = %d\n", __func__, model.type);
}
- // load vocab
{
- std::string word;
- vocab.id_to_token.resize(model.hparams.n_vocab);
- std::vector<char> tmp(64);
-
- for (int i = 0; i < model.hparams.n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
-
- word.resize(len);
- if (len > 0) {
- tmp.resize(len);
- fin.read(tmp.data(), len);
- word.assign(tmp.data(), len);
- } else {
- word.clear();
- }
-
- float score;
- fin.read((char *) &score, sizeof(score));
-
- vocab.token_to_id[word] = i;
-
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
+ fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
+ fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
+ fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
+ fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
+ fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
+ fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
+ fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
+ fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
+ fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16);
+ fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
+ fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
+ fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
}
if (vocab_only) {
- return true;
- }
-
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- // wtype is for per-layer weights, while vtype is for other weights
- ggml_type wtype, vtype;
- switch (model.hparams.f16) {
- case 0: wtype = vtype = GGML_TYPE_F32; break;
- case 1: wtype = vtype = GGML_TYPE_F16; break;
- case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
- case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
- case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
- __func__, fname.c_str(), model.hparams.f16);
- return false;
- }
+ return;
}
auto & ctx = model.ctx;
- size_t ctx_size = 0;
-
- {
- const auto & hparams = model.hparams;
-
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
-
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
-
- ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
-
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
-
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
-
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
-
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
-
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
-
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
-
- ctx_size += (5 + 10*n_layer)*256; // object overhead
-
- fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
+ size_t ctx_size, mmapped_size;
+ ml->calc_sizes(&ctx_size, &mmapped_size);
+ fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
// print memory requirements
{
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
+ mmapped_size +
MEM_REQ_SCRATCH0.at(model.type) +
MEM_REQ_SCRATCH1.at(model.type) +
MEM_REQ_EVAL.at (model.type);
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
+ if (use_mlock) {
+ lctx.model.mlock_buf.init(lctx.model.buf.addr);
+ lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
+ }
struct ggml_init_params params = {
- /*.mem_size =*/ lctx.model.buf.size(),
- /*.mem_buffer =*/ lctx.model.buf.data(),
+ /*.mem_size =*/ lctx.model.buf.size,
+ /*.mem_buffer =*/ lctx.model.buf.addr,
+ /*.no_alloc =*/ ml->use_mmap,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
+ throw format("ggml_init() failed");
}
}
{
const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_vocab = hparams.n_vocab;
-
- model.layers.resize(n_layer);
-
- model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_vocab = hparams.n_vocab;
- model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+ ml->ggml_ctx = ctx;
- // map by name
- model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
+ model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
+ model.norm = ml->get_tensor("norm.weight", {n_embd});
+ model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
- model.tensors["norm.weight"] = model.norm;
- model.tensors["output.weight"] = model.output;
-
- for (int i = 0; i < n_layer; ++i) {
+ model.layers.resize(n_layer);
+ for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
- layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ std::string layers_i = "layers." + std::to_string(i);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
- layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
+ layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
+ layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
+ layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
+ layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
- // map by name
- model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
+ layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
- model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
- model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
- model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
- model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
-
- model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
-
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
+ layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
+ layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
+ layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
- const size_t file_offset = fin.tellg();
-
- fin.close();
+ ml->done_getting_tensors();
- std::vector<uint8_t> tmp;
-
- if (progress_callback) {
- progress_callback(0.0, progress_callback_user_data);
+ // populate `tensors_by_name`
+ for (llama_load_tensor & lt : ml->tensors_map.tensors) {
+ model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
}
- for (int i = 0; i < n_parts; ++i) {
- const int part_id = i;
- //const int part_id = n_parts - i - 1;
-
- std::string fname_part = fname;
- if (i > 0) {
- fname_part += "." + std::to_string(i);
- }
-
- fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
-
- fin = std::ifstream(fname_part, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
-
- fin.seekg(0, fin.end);
- const size_t file_size = fin.tellg();
-
- fin.seekg(file_offset);
+ ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
- // load weights
- {
- size_t total_size = 0;
-
- model.n_loaded = 0;
-
- fprintf(stderr, "%s: ", __func__);
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
-
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (fin.eof()) {
- break;
- }
+ model.mapping = std::move(ml->mapping);
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- fin.read(&name[0], length);
-
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
-
- // split_type = 0: split by columns
- // split_type = 1: split by rows
- int split_type = 0;
-
- // split_type = 0:
- // regex:
- // - tok_embeddings.*
- // - layers.*.attention.wo.weight
- // - layers.*.feed_forward.w2.weight
-
- // split_type = 1:
- // regex:
- // - output.*
- // - layers.*.attention.wq.weight
- // - layers.*.attention.wk.weight
- // - layers.*.attention.wv.weight
- // - layers.*.feed_forward.w1.weight
- // - layers.*.feed_forward.w3.weight
- if (name.find("tok_embeddings") != std::string::npos) {
- split_type = 0;
- } else if (name.find("layers") != std::string::npos) {
- if (name.find("attention.wo.weight") != std::string::npos) {
- split_type = 0;
- } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
- split_type = 0;
- } else {
- split_type = 1;
- }
- } else if (name.find("output") != std::string::npos) {
- split_type = 1;
- }
-
- auto tensor = model.tensors[name.data()];
-
- if (n_dims == 1) {
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- } else {
- if (ggml_nelements(tensor)/n_parts != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- }
-
- if (n_dims == 1) {
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (split_type == 0) {
- if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
- return false;
- }
- }
- }
-
- if (0) {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
- }
-
- size_t bpe = 0;
-
- switch (ftype) {
- case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
- case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
- case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
- case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
- default:
- {
- fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
- return false;
- }
- };
-
- if (n_dims == 1 || n_parts == 1) {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
-
- if (part_id == 0) {
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- } else {
- fin.seekg(ggml_nbytes(tensor), std::ios::cur);
- }
-
- total_size += ggml_nbytes(tensor);
- } else {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
- return false;
- }
-
- if (split_type == 0) {
- const int np0 = ne[0];
-
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- assert(row_size == tensor->nb[1]);
-
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = i1*row_size;
- const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
- }
- } else {
- const int np1 = ne[1];
-
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
-
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = (i1 + part_id*np1)*row_size;
- fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
- }
- }
-
- total_size += ggml_nbytes(tensor)/n_parts;
- }
-
- //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
- model.n_loaded++;
-
- // progress
- if (progress_callback) {
- double current_file_progress = double(size_t(fin.tellg()) - file_offset) / double(file_size - file_offset);
- double current_progress = (double(i) + current_file_progress) / double(n_parts);
- progress_callback(current_progress, progress_callback_user_data);
- }
- if (model.n_loaded % 8 == 0) {
- fprintf(stderr, ".");
- fflush(stderr);
- }
- }
-
- fprintf(stderr, " done\n");
-
- fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
- if (model.n_loaded == 0) {
- fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
- } else if (model.n_loaded != (int) model.tensors.size()) {
- fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
- return false;
- }
- }
-
- fin.close();
- }
-
- lctx.t_load_us = ggml_time_us() - t_start_us;
+ // loading time will be recalculate after the first eval, so
+ // we take page faults deferred by mmap() into consideration
+ lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
+}
- if (progress_callback) {
- progress_callback(1.0, progress_callback_user_data);
+static bool llama_model_load(
+ const std::string & fname,
+ llama_context & lctx,
+ int n_ctx,
+ ggml_type memory_type,
+ bool use_mmap,
+ bool use_mlock,
+ bool vocab_only,
+ llama_progress_callback progress_callback,
+ void *progress_callback_user_data) {
+ try {
+ llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
+ vocab_only, progress_callback, progress_callback_user_data);
+ return true;
+ } catch (const std::string & err) {
+ fprintf(stderr, "error loading model: %s\n", err.c_str());
+ return false;
}
-
- return true;
}
// evaluate the transformer
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size(),
- /*.mem_buffer =*/ buf_compute.data(),
+ /*.mem_size =*/ buf_compute.size,
+ /*.mem_buffer =*/ buf_compute.addr,
+ /*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
ggml_cgraph gf = {};
- gf.n_threads = N > 255 && ggml_cpu_has_blas() ? 1 : n_threads;
+ gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, tokens, N*ggml_element_size(embd));
// self-attention
{
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
+ struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
// store key and value to memory
- if (N >= 1) {
+ {
+ // compute the transposed [N, n_embd] V matrix
+ struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
+
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_embd, (ggml_element_size(kv_self.v)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+ // important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
- n_past, n_rot, 0),
+ Qcur,
0, 2, 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- n_past, n_rot, 1),
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
- ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)));
+ ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
- struct ggml_tensor * V_trans =
- ggml_cpy(ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.v)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
+ // split cached V into n_head heads
+ struct ggml_tensor * V =
+ ggml_view_3d(ctx0, kv_self.v,
+ n_past + N, n_embd/n_head, n_head,
+ n_ctx*ggml_element_size(kv_self.v),
+ n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
+ il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
+#if 1
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+#else
+ // make V contiguous in memory to speed up the matmul, however we waste time on the copy
+ // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
+ // is there a better way?
+ struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
+#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf);
+ // print timing information per ggml operation (for debugging purposes)
+ // requires GGML_PERF to be defined
+ //ggml_graph_print(&gf);
+
+ // plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
- // ggml_graph_print (&gf);
- // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
+ // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
//}
//embd_w.resize(n_vocab*N);
// sampling
//
-static void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
+static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
// find the top k tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
+ [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
return a.first > b.first;
});
llama_context & lctx,
const std::vector<llama_vocab::id> & last_n_tokens,
int top_k,
- double top_p,
- double temp,
- double repeat_penalty) {
+ float top_p,
+ float temp,
+ float repeat_penalty) {
auto & rng = lctx.rng;
const int n_logits = lctx.model.hparams.n_vocab;
const auto & logits = lctx.logits;
const auto * plogits = logits.data() + logits.size() - n_logits;
- std::vector<std::pair<double, llama_vocab::id>> logits_id;
+ if (temp <= 0) {
+ // select the token with the highest logit directly
+ float max_logit = plogits[0];
+ llama_vocab::id max_id = 0;
+
+ for (int i = 1; i < n_logits; ++i) {
+ if (plogits[i] > max_logit) {
+ max_logit = plogits[i];
+ max_id = i;
+ }
+ }
+ return max_id;
+ }
+
+ std::vector<std::pair<float, llama_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
- const double scale = 1.0/temp;
+ const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0) {
+ if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
}
- sample_top_k(logits_id, top_k);
-
- double maxl = -std::numeric_limits<double>::infinity();
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
+ sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
// compute probs for the top k tokens
- std::vector<double> probs;
+ std::vector<float> probs;
probs.reserve(logits_id.size());
+ float maxl = logits_id[0].first;
double sum = 0.0;
for (const auto & kv : logits_id) {
- double p = exp(kv.first - maxl);
+ const float p = expf(kv.first - maxl);
probs.push_back(p);
sum += p;
}
p /= sum;
}
- if (top_p < 1.0f) {
- double cumsum = 0.0f;
+ if (top_p < 1.0) {
+ double cumsum = 0.0;
for (int i = 0; i < (int) probs.size(); i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
break;
}
}
-
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
}
//printf("\n");
//for (int i = 0; i < (int) 10; i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
+ // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
//}
//printf("\n\n");
//exit(0);
// quantization
//
-// TODO: reuse code from the llama_model_load() somehow
-bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype, int qk) {
- ggml_type type = GGML_TYPE_Q4_1;
-
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
+ ggml_type quantized_type;
switch (itype) {
- case 2: type = GGML_TYPE_Q4_0; break;
- case 3: type = GGML_TYPE_Q4_1; break;
- default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
+ case 2: quantized_type = GGML_TYPE_Q4_0; break;
+ case 3: quantized_type = GGML_TYPE_Q4_1; break;
+ default: throw format("invalid quantization type %d\n", itype);
};
- if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
- fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
- return false;
- }
-
- llama_vocab vocab;
-
- printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
-
- auto finp = std::ifstream(fname_inp, std::ios::binary);
- if (!finp) {
- fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
- return false;
- }
-
- auto fout = std::ofstream(fname_out, std::ios::binary);
- if (!fout) {
- fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
- return false;
- }
-
- // verify magic
- {
- uint32_t magic;
- finp.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
- __func__, fname_inp.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
- return false;
- }
-
- fout.write((char *) &magic, sizeof(magic));
-
- uint32_t format_version;
- finp.read((char *) &format_version, sizeof(format_version));
-
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
-
- fout.write((char *) &format_version, sizeof(format_version));
- }
-
- llama_hparams hparams;
-
- // load hparams
- {
- finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- finp.read((char *) &hparams.f16, sizeof(hparams.f16));
-
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
- printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
- printf("%s: n_head = %d\n", __func__, hparams.n_head);
- printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
- printf("%s: f16 = %d\n", __func__, hparams.f16);
-
- fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
- fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fout.write((char *) &itype, sizeof(hparams.f16));
- }
-
- // load vocab
- {
- const int32_t n_vocab = hparams.n_vocab;
-
- if (n_vocab != hparams.n_vocab) {
- fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
- return false;
- }
-
- std::string word;
- vocab.id_to_token.resize(n_vocab);
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- finp.read ((char *) &len, sizeof(len));
- fout.write((char *) &len, sizeof(len));
-
- word.resize(len);
- finp.read ((char *) word.data(), len);
- fout.write((char *) word.data(), len);
-
- float score;
- finp.read ((char *) &score, sizeof(score));
- fout.write((char *) &score, sizeof(score));
-
- vocab.token_to_id[word] = i;
-
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
- }
-
- // load weights
- {
- size_t total_size_org = 0;
- size_t total_size_new = 0;
-
- std::vector<float> work;
-
- std::vector<uint8_t> data_u8;
- std::vector<ggml_fp16_t> data_f16;
- std::vector<float> data_f32;
-
- std::vector<int64_t> hist_all(1 << 4, 0);
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
-
- finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- finp.read(reinterpret_cast<char *>(&length), sizeof(length));
- finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (finp.eof()) {
- break;
- }
-
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- finp.read (&name[0], length);
-
- {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
- }
-
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
-
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
-
- // quantize only 2D tensors
- quantize &= (n_dims == 2);
-
- if (quantize) {
- if (ftype != 0 && ftype != 1) {
- fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
- return false;
- }
-
- if (ftype == 1) {
- data_f16.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
- data_f32.resize(nelements);
- for (int i = 0; i < nelements; ++i) {
- data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
- }
- } else {
- data_f32.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
+ std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
+ /*vocab_only*/ false));
+ llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype);
+
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+ std::vector<int64_t> hist_all(1 << 4, 0);
+
+ size_t idx = 0;
+ for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
+ llama_buffer read_data;
+ read_data.resize(tensor.size);
+ tensor.data = read_data.addr;
+ model_loader->load_data_for(tensor);
+
+ printf("[%zu/%zu] %36s - %s, type = %6s, ",
+ ++idx, model_loader->tensors_map.tensors.size(),
+ tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
+ llama_format_type(tensor.type));
+
+ // This used to be a regex, but <regex> has an extreme cost to compile times.
+ bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
+
+ // quantize only 2D tensors
+ quantize &= (tensor.ne.size() == 2);
+
+ enum ggml_type new_type;
+ void * new_data;
+ size_t new_size;
+ llama_buffer work;
+
+ if (!quantize) {
+ new_type = tensor.type;
+ new_data = tensor.data;
+ new_size = tensor.size;
+ printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
+ } else {
+ new_type = quantized_type;
+ float * f32_data;
+ size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
+ llama_buffer f32_conv_buf;
+ if (tensor.type == GGML_TYPE_F32) {
+ f32_data = (float *) tensor.data;
+ } else if (tensor.type == GGML_TYPE_F16) {
+ f32_conv_buf.resize(nelements * sizeof(float));
+ f32_data = (float *) f32_conv_buf.addr;
+ auto f16_data = (const ggml_fp16_t *) tensor.data;
+ for (size_t i = 0; i < nelements; i++) {
+ f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
}
-
- ftype = itype;
} else {
- const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
-
- data_u8.resize(nelements*bpe);
- finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
+ throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type));
}
- fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fout.write(reinterpret_cast<char *>(&length), sizeof(length));
- fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- for (int i = 0; i < n_dims; ++i) {
- fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ printf("quantizing .. ");
+ fflush(stdout);
+
+ work.resize(nelements * 4); // upper bound on size
+ new_data = work.addr;
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ switch (new_type) {
+ case GGML_TYPE_Q4_0:
+ {
+ new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
+ } break;
+ default:
+ LLAMA_ASSERT(false);
}
- fout.write(&name[0], length);
-
- if (quantize) {
- printf("quantizing .. ");
- work.resize(nelements); // for quantization
-
- size_t cur_size = 0;
- std::vector<int64_t> hist_cur(1 << 4, 0);
-
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1:
- {
- cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
- } break;
- default:
- {
- fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
- return false;
- }
- }
- fout.write(reinterpret_cast<char *>(work.data()), cur_size);
- total_size_new += cur_size;
-
- printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- hist_all[i] += hist_cur[i];
- }
-
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- printf("%5.3f ", hist_cur[i] / (float)nelements);
- }
- printf("\n");
- } else {
- printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
- fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
- total_size_new += data_u8.size();
+ printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
+ for (size_t i = 0; i < hist_cur.size(); i++) {
+ hist_all[i] += hist_cur[i];
}
- total_size_org += nelements * sizeof(float);
- }
-
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
-
- {
- int64_t sum_all = 0;
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- sum_all += hist_all[i];
- }
-
- printf("%s: hist: ", __func__);
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- printf("%5.3f ", hist_all[i] / (float)sum_all);
+ for (size_t i = 0; i < hist_cur.size(); i++) {
+ printf("%5.3f ", hist_cur[i] / float(nelements));
}
printf("\n");
}
+ total_size_org += tensor.size;
+ total_size_new += new_size;
+ file_saver.write_tensor(tensor, new_type, new_data, new_size);
}
- finp.close();
- fout.close();
+ printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+ printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- return true;
+ {
+ int64_t sum_all = 0;
+ for (size_t i = 0; i < hist_all.size(); i++) {
+ sum_all += hist_all[i];
+ }
+
+ printf("%s: hist: ", __func__);
+ for (size_t i = 0; i < hist_all.size(); i++) {
+ printf("%5.3f ", hist_all[i] / float(sum_all));
+ }
+ printf("\n");
+ }
}
//
params.seed = time(NULL);
}
+ unsigned cur_percentage = 0;
+ if (params.progress_callback == NULL) {
+ params.progress_callback_user_data = &cur_percentage;
+ params.progress_callback = [](float progress, void * ctx) {
+ unsigned * cur_percentage_p = (unsigned *) ctx;
+ unsigned percentage = (unsigned) (100 * progress);
+ while (percentage > *cur_percentage_p) {
+ ++*cur_percentage_p;
+ fprintf(stderr, ".");
+ fflush(stderr);
+ if (percentage >= 100) {
+ fprintf(stderr, "\n");
+ }
+ }
+ };
+ }
+
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, memory_type,
- params.vocab_only, params.progress_callback,
- params.progress_callback_user_data)) {
+ if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
+ params.use_mmap, params.use_mlock, params.vocab_only,
+ params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);
return nullptr;
}
- if (params.use_mlock) {
- char *err;
- if (!ggml_mlock(ctx->model.ctx, &err)) {
- fprintf(stderr, "%s\n", err);
- free(err);
- llama_free(ctx);
- return nullptr;
- }
- }
-
// reserve memory for context buffers
- {
+ if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
}
void llama_free(struct llama_context * ctx) {
- kv_cache_free(ctx->model.kv_self);
-
- if (ctx->model.ctx) {
- ggml_free(ctx->model.ctx);
- }
-
delete ctx;
}
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
- int itype,
- int qk) {
- if (!llama_model_quantize_internal(fname_inp, fname_out, itype, qk)) {
- fprintf(stderr, "%s: failed to quantize\n", __func__);
+ int itype) {
+ try {
+ llama_model_quantize_internal(fname_inp, fname_out, itype);
+ return 0;
+ } catch (const std::string & err) {
+ fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
return 1;
}
+}
- return 0;
+// Returns the KV cache that will contain the context for the
+// ongoing prediction with the model.
+const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
+ return ctx->model.kv_self.buf.addr;
+}
+
+// Returns the size of the KV cache
+size_t llama_get_kv_cache_size(struct llama_context * ctx) {
+ return ctx->model.kv_self.buf.size;
+}
+
+int llama_get_kv_cache_token_count(struct llama_context * ctx) {
+ return ctx->model.kv_self.n;
+}
+
+// Sets the KV cache containing the current context for the model
+void llama_set_kv_cache(
+ struct llama_context * ctx,
+ const uint8_t * kv_cache,
+ size_t n_size,
+ int n_token_count) {
+ // Make sure we have the same kv cache setup
+ LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
+ memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
+ ctx->model.kv_self.n = n_token_count;
}
int llama_eval(
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
-
+ // get a more accurate load time, upon first eval
+ if (!ctx->has_evaluated_once) {
+ ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
+ ctx->has_evaluated_once = true;
+ }
return 0;
}
const llama_token * last_n_tokens_data,
int last_n_tokens_size,
int top_k,
- double top_p,
- double temp,
- double repeat_penalty) {
+ float top_p,
+ float temp,
+ float repeat_penalty) {
const int64_t t_start_sample_us = ggml_time_us();
llama_token result = 0;
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
fprintf(stderr, "\n");
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
- fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_sample_us, n_sample, 1e-3f * ctx->t_sample_us / n_sample);
- fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3f * ctx->t_p_eval_us, n_p_eval, 1e-3f * ctx->t_p_eval_us / n_p_eval);
- fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_eval_us, n_eval, 1e-3f * ctx->t_eval_us / n_eval);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
+ fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
+ fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
+ fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
+ fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
+ fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
}
void llama_reset_timings(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
-
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
return s.c_str();
}
+
+// For internal test use
+std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
+ return ctx->model.tensors_by_name;
+}