]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert-llama-ggml-to-gguf: Try to handle files older than GGJTv3 (#3023)
authorKerfuffle <redacted>
Wed, 6 Sep 2023 08:49:11 +0000 (02:49 -0600)
committerGitHub <redacted>
Wed, 6 Sep 2023 08:49:11 +0000 (02:49 -0600)
* convert-llama-ggmlv3-to-gguf: Try to handle files older than GGJTv3

* Better error messages for files that cannot be converted

* Add file type to GGUF output

* Rename to convert-llama-ggml-to-gguf.py

* Include original file type information in description

* Improve some informational output

convert-llama-ggml-to-gguf.py [new file with mode: 0755]
convert-llama-ggmlv3-to-gguf.py [deleted file]

diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py
new file mode 100755 (executable)
index 0000000..b5d3e0b
--- /dev/null
@@ -0,0 +1,451 @@
+#!/usr/bin/env python3
+from __future__ import annotations
+
+import argparse
+import math
+import struct
+import sys
+from enum import IntEnum
+from pathlib import Path
+
+import numpy as np
+
+import os
+if 'NO_LOCAL_GGUF' not in os.environ:
+    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
+import gguf
+
+# Note: Does not support GGML_QKK_64
+QK_K = 256
+# Items here are (block size, type size)
+GGML_QUANT_SIZES = {
+    gguf.GGMLQuantizationType.F32  : (1, 4),
+    gguf.GGMLQuantizationType.F16  : (1, 2),
+    gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
+    gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
+    gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
+    gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
+    gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
+    gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
+    gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
+    gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
+    gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
+    gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
+    gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
+    gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
+}
+
+class GGMLFormat(IntEnum):
+    GGML = 0
+    GGMF = 1
+    GGJT = 2
+
+class GGMLFType(IntEnum):
+    ALL_F32              = 0
+    MOSTLY_F16           = 1
+    MOSTLY_Q4_0          = 2
+    MOSTLY_Q4_1          = 3
+    MOSTLY_Q4_1_SOME_F16 = 4
+    MOSTLY_Q8_0          = 7
+    MOSTLY_Q5_0          = 8
+    MOSTLY_Q5_1          = 9
+    MOSTLY_Q2_K          = 10
+    MOSTLY_Q3_K_S        = 11
+    MOSTLY_Q3_K_M        = 12
+    MOSTLY_Q3_K_L        = 13
+    MOSTLY_Q4_K_S        = 14
+    MOSTLY_Q4_K_M        = 15
+    MOSTLY_Q5_K_S        = 16
+    MOSTLY_Q5_K_M        = 17
+    MOSTLY_Q6_K          = 18
+
+class Hyperparameters:
+    def __init__(self):
+        self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
+        self.n_layer = self.n_rot = self.n_ff = 0
+        self.ftype = GGMLFType.ALL_F32
+
+    def set_n_ff(self, model):
+        ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
+        assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
+        ff_tensor = model.tensors[ff_tensor_idx]
+        self.n_ff = ff_tensor.dims[1]
+
+    def load(self, data, offset):
+        (
+            self.n_vocab,
+            self.n_embd,
+            self.n_mult,
+            self.n_head,
+            self.n_layer,
+            self.n_rot,
+            ftype,
+        ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
+        try:
+            self.ftype = GGMLFType(ftype)
+        except ValueError:
+            raise ValueError(f'Invalid ftype {ftype}')
+        return 4 * 7
+
+    def __str__(self):
+        return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
+
+class Vocab:
+    def __init__(self, load_scores = True):
+        self.items = []
+        self.load_scores = load_scores
+
+    def load(self, data, offset, n_vocab):
+        orig_offset = offset
+        for _ in range(n_vocab):
+            itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
+            assert itemlen < 4096, 'Absurd vocab item length'
+            offset += 4
+            item_text = bytes(data[offset:offset + itemlen])
+            offset += itemlen
+            if self.load_scores:
+                item_score = struct.unpack('<f', data[offset:offset + 4])[0]
+                offset += 4
+            else:
+                item_score = 0.0
+            self.items.append((item_text, item_score))
+        return offset - orig_offset
+
+class Tensor:
+    def __init__(self, use_padding = True):
+        self.name = None
+        self.dims: tuple[int, ...] = ()
+        self.dtype = None
+        self.start_offset = 0
+        self.len_bytes = np.int64(0)
+        self.use_padding = use_padding
+
+    def load(self, data, offset):
+        orig_offset = offset
+        (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
+        assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
+        assert name_len < 4096, 'Absurd tensor name length'
+        quant = GGML_QUANT_SIZES.get(dtype)
+        assert quant is not None, 'Unknown tensor type'
+        (blksize, tysize) = quant
+        offset += 12
+        self.dtype= dtype
+        self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
+        offset += 4 * n_dims
+        self.name = bytes(data[offset:offset + name_len])
+        offset += name_len
+        pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
+        offset += pad
+        n_elems = np.prod(self.dims)
+        n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
+        self.start_offset = offset
+        self.len_bytes = n_bytes
+        offset += n_bytes
+        # print(n_dims, name_len, dtype, self.dims, self.name, pad)
+        return offset - orig_offset
+
+class GGMLModel:
+    def __init__(self):
+        self.hyperparameters = None
+        self.vocab = None
+        self.tensor_map = {}
+        self.tensors = []
+
+    def validate_header(self, data, offset):
+        magic = bytes(data[offset:offset + 4])
+        if magic == b'GGUF':
+            raise ValueError('File is already in GGUF format.')
+        if magic == b'lmgg':
+            self.file_format = GGMLFormat.GGML
+            self.format_version = 1
+            return 4
+        version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
+        if magic == b'fmgg':
+            if version != 1:
+                raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
+            self.file_format = GGMLFormat.GGMF
+            self.format_version = version
+            return 8
+        if magic == b'tjgg':
+            if version < 1 or version > 3:
+                raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
+            self.file_format = GGMLFormat.GGJT
+            self.format_version = version
+            return 8
+        raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
+
+    def validate_conversion(self, ftype):
+        err = ''
+        if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
+            if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
+                err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
+        elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
+            if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
+                          GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
+                err = 'Q4 and Q8 quantizations changed in GGJTv3.'
+        if len(err) > 0:
+            raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
+
+    def load(self, data, offset):
+        offset += self.validate_header(data, offset)
+        hp = Hyperparameters()
+        offset += hp.load(data, offset)
+        print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
+        self.validate_conversion(hp.ftype)
+        vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
+        offset += vocab.load(data, offset, hp.n_vocab)
+        tensors: list[Tensor] = []
+        tensor_map = {}
+        while offset < len(data):
+            tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
+            offset += tensor.load(data, offset)
+            tensor_map[tensor.name] = len(tensors)
+            tensors.append(tensor)
+        self.hyperparameters = hp
+        self.vocab = vocab
+        self.tensors = tensors
+        self.tensor_map = tensor_map
+        hp.set_n_ff(self)
+        return offset
+
+class GGMLToGGUF:
+    def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
+        hp = ggml_model.hyperparameters
+        self.model = ggml_model
+        self.data = data
+        self.cfg = cfg
+        self.params_override = params_override
+        self.vocab_override = vocab_override
+        self.special_vocab = special_vocab
+        if params_override is not None:
+            n_kv_head = params_override.n_head_kv
+        else:
+            if cfg.gqa == 1:
+                n_kv_head = hp.n_head
+            else:
+                gqa = float(cfg.gqa)
+                n_kv_head = None
+                for x in range(1, 256):
+                    if float(hp.n_head) / float(x) == gqa:
+                        n_kv_head = x
+                assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
+                print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
+        self.n_kv_head = n_kv_head
+        self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
+
+    def save(self):
+        print('* Preparing to save GGUF file')
+        gguf_writer = gguf.GGUFWriter(
+            self.cfg.output,
+            gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
+            use_temp_file = False )
+        self.add_params(gguf_writer)
+        self.add_vocab(gguf_writer)
+        if self.special_vocab is not None:
+            self.special_vocab.add_to_gguf(gguf_writer)
+        self.add_tensors(gguf_writer)
+        print("    gguf: write header")
+        gguf_writer.write_header_to_file()
+        print("    gguf: write metadata")
+        gguf_writer.write_kv_data_to_file()
+        print("    gguf: write tensors")
+        gguf_writer.write_tensors_to_file()
+        gguf_writer.close()
+
+    def add_params(self, gguf_writer):
+        hp = self.model.hyperparameters
+        cfg = self.cfg
+        if cfg.desc is not None:
+            desc = cfg.desc
+        else:
+            desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
+        try:
+            # Filenames aren't necessarily valid UTF8.
+            name = cfg.name if cfg.name is not None else cfg.input.name
+        except UnicodeDecodeError:
+            name = None
+        print('* Adding model parameters and KV items')
+        if name is not None:
+            gguf_writer.add_name(name)
+        gguf_writer.add_description(desc)
+        gguf_writer.add_file_type(int(hp.ftype))
+        if self.params_override is not None:
+            po = self.params_override
+            assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
+            assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
+            assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
+            gguf_writer.add_context_length      (po.n_ctx)
+            gguf_writer.add_embedding_length    (po.n_embd)
+            gguf_writer.add_block_count         (po.n_layer)
+            gguf_writer.add_feed_forward_length (po.n_ff)
+            gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
+            gguf_writer.add_head_count          (po.n_head)
+            gguf_writer.add_head_count_kv       (po.n_head_kv)
+            gguf_writer.add_layer_norm_rms_eps  (po.f_norm_eps)
+            return
+        gguf_writer.add_context_length(cfg.context_length)
+        gguf_writer.add_embedding_length(hp.n_embd)
+        gguf_writer.add_block_count(hp.n_layer)
+        gguf_writer.add_feed_forward_length(hp.n_ff)
+        gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
+        gguf_writer.add_head_count(hp.n_head)
+        gguf_writer.add_head_count_kv(self.n_kv_head)
+        gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
+
+    def add_vocab(self, gguf_writer):
+        hp = self.model.hyperparameters
+        gguf_writer.add_tokenizer_model('llama')
+        tokens = []
+        scores = []
+        toktypes = []
+        if self.vocab_override is not None:
+            vo = self.vocab_override
+            print('* Adding vocab item(s)')
+            for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
+                tokens.append(vbytes)
+                scores.append(score)
+                toktypes.append(ttype)
+            assert len(tokens) == hp.n_vocab, \
+                f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
+            gguf_writer.add_token_list(tokens)
+            gguf_writer.add_token_scores(scores)
+            if len(toktypes) > 0:
+                gguf_writer.add_token_types(toktypes)
+            return
+        print(f'* Adding {hp.n_vocab} vocab item(s)')
+        assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
+        for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
+            tt = 1 # Normal
+            # Special handling for UNK, BOS, EOS tokens.
+            if tokid <= 2:
+                if tokid == 0:
+                    vbytes = b'<unk>'
+                    tt = 2
+                elif tokid == 1:
+                    vbytes = b'<s>'
+                    tt = 3
+                else:
+                    vbytes = b'</s>'
+                    tt = 3
+            elif len(vbytes) == 0:
+                tt = 3 # Control
+            elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
+                vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
+                tt = 6 # Byte
+            else:
+                vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
+            toktypes.append(tt)
+            tokens.append(vbytes)
+            scores.append(vscore)
+        gguf_writer.add_token_list(tokens)
+        gguf_writer.add_token_scores(scores)
+        gguf_writer.add_token_types(toktypes)
+        gguf_writer.add_unk_token_id(0)
+        gguf_writer.add_bos_token_id(1)
+        gguf_writer.add_eos_token_id(2)
+
+    def add_tensors(self, gguf_writer):
+        tensor_map = self.name_map
+        data = self.data
+        print(f'* Adding {len(self.model.tensors)} tensor(s)')
+        for tensor in self.model.tensors:
+            name = str(tensor.name, 'UTF-8')
+            mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+            assert mapped_name is not None, f'Bad name {name}'
+            tempdims = list(tensor.dims[:])
+            if len(tempdims) > 1:
+                temp = tempdims[1]
+                tempdims[1] = tempdims[0]
+                tempdims[0] = temp
+            # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
+            gguf_writer.add_tensor(
+                mapped_name,
+                data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
+                raw_shape = tempdims,
+                raw_dtype = tensor.dtype )
+
+def handle_metadata(cfg, hp):
+    import convert
+    assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
+    hf_config_path   = cfg.model_metadata_dir / "config.json"
+    orig_config_path = cfg.model_metadata_dir / "params.json"
+    # We pass a fake model here. "original" mode will check the shapes of some
+    # tensors if information is missing in the .json file: other than that, the
+    # model data isn't used so this should be safe (at least for now).
+    fakemodel = {
+        'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
+        'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
+    }
+    fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
+    fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
+    if hf_config_path.exists():
+        params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
+    elif orig_config_path.exists():
+        params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
+    else:
+        raise ValueError('Unable to load metadata')
+    vocab = convert.load_vocab(
+        cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
+        cfg.vocabtype )
+    # FIXME: Respect cfg.vocab_dir?
+    svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
+    convert.check_vocab_size(params, vocab)
+    return (params, vocab, svocab)
+
+def handle_args():
+    parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
+    parser.add_argument('--input', '-i', type = Path, required = True,
+        help = 'Input GGMLv3 filename')
+    parser.add_argument('--output', '-o', type = Path, required = True,
+        help ='Output GGUF filename')
+    parser.add_argument('--name',
+        help = 'Set model name')
+    parser.add_argument('--desc',
+        help = 'Set model description')
+    parser.add_argument('--gqa', type = int, default = 1,
+        help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
+    parser.add_argument('--eps', default = '5.0e-06',
+        help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
+    parser.add_argument('--context-length', '-c', type=int, default = 2048,
+        help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
+    parser.add_argument('--model-metadata-dir', '-m', type = Path,
+        help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
+    parser.add_argument("--vocab-dir", type=Path,
+        help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
+    parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
+        help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
+    return parser.parse_args()
+
+def main():
+    cfg = handle_args()
+    print(f'* Using config: {cfg}')
+    print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
+    if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
+        print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
+    data = np.memmap(cfg.input, mode = 'r')
+    model = GGMLModel()
+    print('* Scanning GGML input file')
+    offset = model.load(data, 0)
+    print(f'* GGML model hyperparameters: {model.hyperparameters}')
+    vocab_override = None
+    params_override = None
+    special_vocab = None
+    if cfg.model_metadata_dir is not None:
+        (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
+        print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
+        print(f'* Overriding params: {params_override}')
+        print(f'* Overriding vocab: {vocab_override}')
+        print(f'* Special vocab: {special_vocab}')
+    else:
+        print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
+        if model.file_format == GGMLFormat.GGML:
+            print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
+    converter = GGMLToGGUF(model, data, cfg,
+        params_override = params_override,
+        vocab_override = vocab_override,
+        special_vocab = special_vocab )
+    converter.save()
+    print(f'* Successful completion. Output saved to: {cfg.output}')
+
+if __name__ == '__main__':
+    main()
diff --git a/convert-llama-ggmlv3-to-gguf.py b/convert-llama-ggmlv3-to-gguf.py
deleted file mode 100755 (executable)
index 08ba0c4..0000000
+++ /dev/null
@@ -1,353 +0,0 @@
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import argparse
-import math
-import struct
-import sys
-from pathlib import Path
-
-import numpy as np
-
-import os
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-# Note: Does not support GGML_QKK_64
-QK_K = 256
-# Items here are (block size, type size)
-GGML_QUANT_SIZES = {
-    gguf.GGMLQuantizationType.F32  : (1, 4),
-    gguf.GGMLQuantizationType.F16  : (1, 2),
-    gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
-    gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
-    gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
-    gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
-    gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
-    gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
-    gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
-    gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
-    gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
-    gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
-    gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
-    gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
-}
-
-class Hyperparameters:
-    def __init__(self):
-        self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
-        self.n_ff = 0
-
-    def set_n_ff(self, model):
-        ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
-        assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
-        ff_tensor = model.tensors[ff_tensor_idx]
-        self.n_ff = ff_tensor.dims[1]
-
-    def load(self, data, offset):
-        (
-            self.n_vocab,
-            self.n_embd,
-            self.n_mult,
-            self.n_head,
-            self.n_layer,
-            self.n_rot,
-            self.ftype,
-        ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
-        return 4 * 7
-
-    def __str__(self):
-        return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
-
-class Vocab:
-    def __init__(self):
-        self.items = []
-
-    def load(self, data, offset, n_vocab):
-        orig_offset = offset
-        for _ in range(n_vocab):
-            itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
-            assert itemlen < 4096, 'Absurd vocab item length'
-            offset += 4
-            vocab = bytes(data[offset:offset + itemlen])
-            offset += itemlen
-            score = struct.unpack('<f', data[offset:offset + 4])[0]
-            offset += 4
-            self.items.append((vocab, score))
-        return offset - orig_offset
-
-class Tensor:
-    def __init__(self):
-        self.name = None
-        self.dims: tuple[int, ...] = ()
-        self.dtype = None
-        self.start_offset = 0
-        self.len_bytes = np.int64(0)
-
-    def load(self, data, offset):
-        orig_offset = offset
-        (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
-        assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
-        assert name_len < 4096, 'Absurd tensor name length'
-        quant = GGML_QUANT_SIZES.get(dtype)
-        assert quant is not None, 'Unknown tensor type'
-        (blksize, tysize) = quant
-        offset += 12
-        self.dtype= dtype
-        self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
-        offset += 4 * n_dims
-        self.name = bytes(data[offset:offset + name_len])
-        offset += name_len
-        pad = ((offset + 31) & ~31) - offset
-        offset += pad
-        n_elems = np.prod(self.dims)
-        n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
-        self.start_offset = offset
-        self.len_bytes = n_bytes
-        offset += n_bytes
-        # print(n_dims, name_len, dtype, self.dims, self.name, pad)
-        return offset - orig_offset
-
-class GGMLV3Model:
-    def __init__(self):
-        self.hyperparameters = None
-        self.vocab = None
-        self.tensor_map = {}
-        self.tensors = []
-
-    def validate_header(self, data, offset):
-        if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
-            raise ValueError('Only GGJTv3 supported')
-        return 8
-
-    def load(self, data, offset):
-        offset += self.validate_header(data, offset)
-        hp = Hyperparameters()
-        offset += hp.load(data, offset)
-        vocab = Vocab()
-        offset += vocab.load(data, offset, hp.n_vocab)
-        tensors: list[Tensor] = []
-        tensor_map = {}
-        while offset < len(data):
-            tensor = Tensor()
-            offset += tensor.load(data, offset)
-            tensor_map[tensor.name] = len(tensors)
-            tensors.append(tensor)
-        self.hyperparameters = hp
-        self.vocab = vocab
-        self.tensors = tensors
-        self.tensor_map = tensor_map
-        hp.set_n_ff(self)
-        return offset
-
-class GGMLToGGUF:
-    def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
-        hp = ggml_model.hyperparameters
-        self.model = ggml_model
-        self.data = data
-        self.cfg = cfg
-        self.params_override = params_override
-        self.vocab_override = vocab_override
-        self.special_vocab = special_vocab
-        if params_override is not None:
-            n_kv_head = params_override.n_head_kv
-        else:
-            if cfg.gqa == 1:
-                n_kv_head = hp.n_head
-            else:
-                gqa = float(cfg.gqa)
-                n_kv_head = None
-                for x in range(1, 256):
-                    if float(hp.n_head) / float(x) == gqa:
-                        n_kv_head = x
-                assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
-                print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
-        self.n_kv_head = n_kv_head
-        self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
-
-    def save(self):
-        print('* Preparing to save GGUF file')
-        gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
-        self.add_params(gguf_writer)
-        self.add_vocab(gguf_writer)
-        if self.special_vocab is not None:
-            self.special_vocab.add_to_gguf(gguf_writer)
-        self.add_tensors(gguf_writer)
-        print("    gguf: write header")
-        gguf_writer.write_header_to_file()
-        print("    gguf: write metadata")
-        gguf_writer.write_kv_data_to_file()
-        print("    gguf: write tensors")
-        gguf_writer.write_tensors_to_file()
-        gguf_writer.close()
-
-    def add_params(self, gguf_writer):
-        hp = self.model.hyperparameters
-        cfg = self.cfg
-        desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
-        try:
-            # Filenames aren't necessarily valid UTF8.
-            name = cfg.name if cfg.name is not None else cfg.input.name
-        except UnicodeDecodeError:
-            name = None
-        print('* Adding model parameters and KV items')
-        if name is not None:
-            gguf_writer.add_name(name)
-        gguf_writer.add_description(desc)
-        if self.params_override is not None:
-            po = self.params_override
-            assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
-            assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
-            assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
-            gguf_writer.add_context_length      (po.n_ctx)
-            gguf_writer.add_embedding_length    (po.n_embd)
-            gguf_writer.add_block_count         (po.n_layer)
-            gguf_writer.add_feed_forward_length (po.n_ff)
-            gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
-            gguf_writer.add_head_count          (po.n_head)
-            gguf_writer.add_head_count_kv       (po.n_head_kv)
-            gguf_writer.add_layer_norm_rms_eps  (po.f_norm_eps)
-            return
-        gguf_writer.add_context_length(cfg.context_length)
-        gguf_writer.add_embedding_length(hp.n_embd)
-        gguf_writer.add_block_count(hp.n_layer)
-        gguf_writer.add_feed_forward_length(hp.n_ff)
-        gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
-        gguf_writer.add_head_count(hp.n_head)
-        gguf_writer.add_head_count_kv(self.n_kv_head)
-        gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
-
-    def add_vocab(self, gguf_writer):
-        hp = self.model.hyperparameters
-        gguf_writer.add_tokenizer_model('llama')
-        tokens = []
-        scores = []
-        toktypes = []
-        if self.vocab_override is not None:
-            vo = self.vocab_override
-            print('* Adding vocab item(s)')
-            for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
-                tokens.append(vbytes)
-                scores.append(score)
-                toktypes.append(ttype)
-            assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
-            gguf_writer.add_token_list(tokens)
-            gguf_writer.add_token_scores(scores)
-            if len(toktypes) > 0:
-                gguf_writer.add_token_types(toktypes)
-            return
-        print(f'* Adding {hp.n_vocab} vocab item(s)')
-        assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
-        for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
-            tt = 1 # Normal
-            # Special handling for UNK, BOS, EOS tokens.
-            if tokid <= 2:
-                if tokid == 0:
-                    vbytes = b'<unk>'
-                    tt = 2
-                elif tokid == 1:
-                    vbytes = b'<s>'
-                    tt = 3
-                else:
-                    vbytes = b'</s>'
-                    tt = 3
-            elif len(vbytes) == 0:
-                tt = 3 # Control
-            elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
-                vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
-                tt = 6 # Byte
-            else:
-                vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
-            toktypes.append(tt)
-            tokens.append(vbytes)
-            scores.append(vscore)
-        gguf_writer.add_token_list(tokens)
-        gguf_writer.add_token_scores(scores)
-        gguf_writer.add_token_types(toktypes)
-        gguf_writer.add_unk_token_id(0)
-        gguf_writer.add_bos_token_id(1)
-        gguf_writer.add_eos_token_id(2)
-
-    def add_tensors(self, gguf_writer):
-        tensor_map = self.name_map
-        data = self.data
-        print(f'* Adding {len(self.model.tensors)} tensor(s)')
-        for tensor in self.model.tensors:
-            name = str(tensor.name, 'UTF-8')
-            mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-            assert mapped_name is not None, f'Bad name {name}'
-            tempdims = list(tensor.dims[:])
-            if len(tempdims) > 1:
-                temp = tempdims[1]
-                tempdims[1] = tempdims[0]
-                tempdims[0] = temp
-            # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
-            gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
-
-def handle_metadata(cfg, hp):
-    import convert
-    assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
-    hf_config_path   = cfg.model_metadata_dir / "config.json"
-    orig_config_path = cfg.model_metadata_dir / "params.json"
-    # We pass a fake model here. "original" mode will check the shapes of some
-    # tensors if information is missing in the .json file: other than that, the
-    # model data isn't used so this should be safe (at least for now).
-    fakemodel = {
-        'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
-        'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
-    }
-    fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
-    fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
-    if hf_config_path.exists():
-        params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
-    elif orig_config_path.exists():
-        params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
-    else:
-        raise ValueError('Unable to load metadata')
-    vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
-    # FIXME: Respect cfg.vocab_dir?
-    svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
-    convert.check_vocab_size(params, vocab)
-    return (params, vocab, svocab)
-
-def handle_args():
-    parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
-    parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename')
-    parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename')
-    parser.add_argument('--name', help = 'Set model name')
-    parser.add_argument('--desc', help = 'Set model description')
-    parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
-    parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
-    parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
-    parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
-    parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
-    parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
-    return parser.parse_args()
-
-def main():
-    cfg = handle_args()
-    print(f'* Using config: {cfg}')
-    print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
-    data = np.memmap(cfg.input, mode = 'r')
-    model = GGMLV3Model()
-    print('* Scanning GGML input file')
-    offset = model.load(data, 0)
-    print(f'* GGML model hyperparameters: {model.hyperparameters}')
-    vocab_override = None
-    params_override = None
-    special_vocab = None
-    if cfg.model_metadata_dir is not None:
-        (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
-        print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
-        print(f'* Overriding params: {params_override}')
-        print(f'* Overriding vocab: {vocab_override}')
-        print(f'* Special vocab: {special_vocab}')
-    else:
-        print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
-    converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab)
-    converter.save()
-    print(f'* Successful completion. Output saved to: {cfg.output}')
-
-if __name__ == '__main__':
-    main()