]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add support for jina-reranker-v2 (#13900)
authorSigbjørn Skjæret <redacted>
Thu, 29 May 2025 19:42:31 +0000 (21:42 +0200)
committerGitHub <redacted>
Thu, 29 May 2025 19:42:31 +0000 (21:42 +0200)
convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-model.cpp

index 8fcff0de7d6bac473028f05f4d1a324f49df6d1f..868bb6826b904682abe60d40f402122e710525aa 100755 (executable)
@@ -3782,44 +3782,93 @@ class BertModel(TextModel):
         from sentencepiece import sentencepiece_model_pb2 as model
 
         tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
+
+        tokenizer_json = {}
+        tokenizer_config_json = {}
         if not tokenizer_path.is_file():
-            raise FileNotFoundError(f"File not found: {tokenizer_path}")
+            tokenizer_path = self.dir_model / 'tokenizer.json'
+            tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
 
-        sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
-        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
-        assert sentencepiece_model.trainer_spec.model_type == 1  # UNIGRAM
+            if not tokenizer_path.is_file():
+                raise FileNotFoundError(f"File not found: {tokenizer_path}")
 
-        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
-        remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
-        precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+            from base64 import b64decode
+            from transformers import AutoTokenizer
+            tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
 
-        tokenizer = SentencePieceProcessor()
-        tokenizer.LoadFromFile(str(tokenizer_path))
+            with open(tokenizer_path, "r", encoding="utf-8") as fp:
+                tokenizer_json = json.load(fp)
 
-        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+            if tokenizer_config_path.is_file():
+                with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
+                    tokenizer_config_json = json.load(fp)
+
+            add_prefix = tokenizer.add_prefix_space
+            remove_whitespaces = tokenizer.clean_up_tokenization_spaces
+            precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
+
+            vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size)
+        else:
+            sentencepiece_model = model.ModelProto()  # pyright: ignore[reportAttributeAccessIssue]
+            sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+            assert sentencepiece_model.trainer_spec.model_type == 1  # UNIGRAM
+
+            add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+            remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
+            precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
+
+            tokenizer = SentencePieceProcessor()
+            tokenizer.LoadFromFile(str(tokenizer_path))
+
+            vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 
         tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
         scores: list[float] = [-10000.0] * vocab_size
         toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
 
-        for token_id in range(tokenizer.vocab_size()):
-            piece = tokenizer.IdToPiece(token_id)
-            text = piece.encode("utf-8")
-            score = tokenizer.GetScore(token_id)
+        if isinstance(tokenizer, SentencePieceProcessor):
+            for token_id in range(tokenizer.vocab_size()):
+                piece = tokenizer.IdToPiece(token_id)
+                text = piece.encode("utf-8")
+                score = tokenizer.GetScore(token_id)
 
-            toktype = SentencePieceTokenTypes.NORMAL
-            if tokenizer.IsUnknown(token_id):
-                toktype = SentencePieceTokenTypes.UNKNOWN
-            elif tokenizer.IsControl(token_id):
-                toktype = SentencePieceTokenTypes.CONTROL
-            elif tokenizer.IsUnused(token_id):
-                toktype = SentencePieceTokenTypes.UNUSED
-            elif tokenizer.IsByte(token_id):
-                toktype = SentencePieceTokenTypes.BYTE
+                toktype = SentencePieceTokenTypes.NORMAL
+                if tokenizer.IsUnknown(token_id):
+                    toktype = SentencePieceTokenTypes.UNKNOWN
+                elif tokenizer.IsControl(token_id):
+                    toktype = SentencePieceTokenTypes.CONTROL
+                elif tokenizer.IsUnused(token_id):
+                    toktype = SentencePieceTokenTypes.UNUSED
+                elif tokenizer.IsByte(token_id):
+                    toktype = SentencePieceTokenTypes.BYTE
 
-            tokens[token_id] = text
-            scores[token_id] = score
-            toktypes[token_id] = toktype
+                tokens[token_id] = text
+                scores[token_id] = score
+                toktypes[token_id] = toktype
+        else:
+            added_vocab = tokenizer.get_added_vocab()
+            unk_token = tokenizer_config_json.get("unk_token")
+            unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
+
+            for token_id in range(vocab_size):
+                piece = tokenizer._convert_id_to_token(token_id)
+                text = piece.encode("utf-8")
+                score = tokenizer_json["model"]["vocab"][token_id][1]
+
+                toktype = SentencePieceTokenTypes.NORMAL
+                if token_id == unk_token_id:
+                    toktype = SentencePieceTokenTypes.UNKNOWN
+                elif token_id in tokenizer.all_special_ids:
+                    toktype = SentencePieceTokenTypes.CONTROL
+                elif token_id in added_vocab.values():
+                    toktype = SentencePieceTokenTypes.USER_DEFINED
+                # No reliable way to detect this, but jina doesn't have any
+                # elif tokenizer.IsByte(token_id):
+                #     toktype = SentencePieceTokenTypes.BYTE
+
+                tokens[token_id] = text
+                scores[token_id] = score
+                toktypes[token_id] = toktype
 
         if vocab_size > len(tokens):
             pad_count = vocab_size - len(tokens)
@@ -3829,15 +3878,16 @@ class BertModel(TextModel):
                 scores.append(-1000.0)
                 toktypes.append(SentencePieceTokenTypes.UNUSED)
 
-        # realign tokens (see HF tokenizer code)
-        tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
-        scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
-        toktypes = [
-            SentencePieceTokenTypes.CONTROL,
-            SentencePieceTokenTypes.CONTROL,
-            SentencePieceTokenTypes.CONTROL,
-            SentencePieceTokenTypes.UNKNOWN,
-        ] + toktypes[3:-1]
+        if isinstance(tokenizer, SentencePieceProcessor):
+            # realign tokens (see HF tokenizer code)
+            tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
+            scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
+            toktypes = [
+                SentencePieceTokenTypes.CONTROL,
+                SentencePieceTokenTypes.CONTROL,
+                SentencePieceTokenTypes.CONTROL,
+                SentencePieceTokenTypes.UNKNOWN,
+            ] + toktypes[3:-1]
 
         self.gguf_writer.add_tokenizer_model("t5")
         self.gguf_writer.add_tokenizer_pre("default")
index 635b61f224b1e96e7b06557d34c614d1ec068685..3ee2b2064e1b429b74a0b8e48a38092d3c84f0ef 100644 (file)
@@ -1036,6 +1036,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.POS_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
         MODEL_TENSOR.ATTN_OUT_NORM,
+        MODEL_TENSOR.ATTN_QKV,
         MODEL_TENSOR.ATTN_Q,
         MODEL_TENSOR.ATTN_K,
         MODEL_TENSOR.ATTN_V,
index 48167dd648c0aa5941c3748d5f6cd54eccb3010f..d0dad7036bc468c4f8f1b21a40de5c4c79345032 100644 (file)
@@ -157,6 +157,7 @@ class TensorNameMap:
             "h.{bid}.attn.c_attn",                                                 # gpt2
             "transformer.h.{bid}.mixer.Wqkv",                                      # phi2
             "encoder.layers.{bid}.attn.Wqkv",                                      # nomic-bert
+            "encoder.layers.{bid}.mixer.Wqkv",                                     # jina
             "model.layers.{bid}.self_attn.qkv_proj",                               # phi3
             "encoder.layers.{bid}.self_attention.query_key_value",                 # chatglm
             "transformer.layers.{bid}.attn.qkv_proj",                              # openelm
@@ -224,6 +225,7 @@ class TensorNameMap:
             "model.layers.layers.{bid}.self_attn.o_proj",                   # plamo
             "model.layers.{bid}.attention.wo",                              # internlm2
             "encoder.layers.{bid}.attn.out_proj",                           # nomic-bert
+            "encoder.layers.{bid}.mixer.out_proj",                          # jina
             "transformer.decoder_layer.{bid}.multi_head_attention.linear",  # Grok
             "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj",        # dbrx
             "encoder.layers.{bid}.self_attention.dense",                    # chatglm
index 2bb18c85fce2810309eea8e8ac1c6953d9133293..c0590e105c8895b9446703752241fd1e2d758368 100644 (file)
@@ -450,6 +450,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_TOKEN_TYPES,     "token_types" },
             { LLM_TENSOR_POS_EMBD,        "position_embd" },
             { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
+            { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
index 4a4618a2bcab7644e4e8cd79baeed4f4927a1297..ecaae6bf03aa360ff546be85497036ad3ca698f6 100644 (file)
@@ -2132,7 +2132,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                     for (int i = 0; i < n_layer; ++i) {
                         auto & layer = layers[i];
 
-                        if (arch == LLM_ARCH_BERT) {
+                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
+                        layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
+
+                        if (!layer.wqkv) {
                             layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
                             layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd}, 0);
 
@@ -2141,12 +2144,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
 
                             layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
                             layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa}, 0);
-                        } else {
-                            layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
-                        }
-
-                        if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
-                            layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
                         }
 
                         layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd}, 0);
@@ -5910,36 +5907,11 @@ struct llm_build_bert : public llm_graph_context {
             ggml_tensor * Vcur;
 
             // self-attention
-            if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
-                Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
-
-                if (model.layers[il].attn_q_norm) {
-                    Qcur = build_norm(Qcur,
-                            model.layers[il].attn_q_norm,
-                            model.layers[il].attn_q_norm_b,
-                            LLM_NORM, il);
-                }
-
-                Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
-
-                if (model.layers[il].attn_k_norm) {
-                    Kcur = build_norm(Kcur,
-                            model.layers[il].attn_k_norm,
-                            model.layers[il].attn_k_norm_b,
-                            LLM_NORM, il);
-                }
-
-                Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
-
-                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
-                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
-                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
-            } else {
-                // compute Q and K and RoPE them
+            if (model.layers[il].wqkv) {
                 cur = build_lora_mm(model.layers[il].wqkv, cur);
                 cb(cur, "wqkv", il);
 
-                if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
+                if (model.layers[il].bqkv) {
                     cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                     cb(cur, "bqkv", il);
                 }
@@ -5947,11 +5919,32 @@ struct llm_build_bert : public llm_graph_context {
                 Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                 Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                 Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+            } else {
+                Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
+                Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
+                Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
+            }
 
-                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
-                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
-                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+            if (model.layers[il].attn_q_norm) {
+                Qcur = build_norm(Qcur,
+                        model.layers[il].attn_q_norm,
+                        model.layers[il].attn_q_norm_b,
+                        LLM_NORM, il);
+            }
+
+            if (model.layers[il].attn_k_norm) {
+                Kcur = build_norm(Kcur,
+                        model.layers[il].attn_k_norm,
+                        model.layers[il].attn_k_norm_b,
+                        LLM_NORM, il);
+            }
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
 
+            // RoPE
+            if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
                 Qcur = ggml_rope_ext(
                         ctx0, Qcur, inp_pos, nullptr,
                         n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,