}
if (ctx) {
llama_perf_context_print(ctx);
+ llama_memory_breakdown_print(ctx);
}
}
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
- GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend);
+ GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
return sched->backends[i];
}
+ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ GGML_ASSERT(sched);
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ return sched->bufts[backend_index];
+}
+
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
//
// Performance utils
//
- // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
+ // NOTE: Used by llama.cpp examples/tools, avoid using in third-party apps. Instead, do your own performance measurements.
//
struct llama_perf_context_data {
- double t_start_ms;
- double t_load_ms;
- double t_p_eval_ms;
- double t_eval_ms;
-
- int32_t n_p_eval;
- int32_t n_eval;
- int32_t n_reused; // number of times a ggml compute graph had been reused
+ // ms == milliseconds
+ double t_start_ms; // absolute start time
+ double t_load_ms; // time needed for loading the model
+ double t_p_eval_ms; // time needed for processing the prompt
+ double t_eval_ms; // time needed for generating tokens
+
+ int32_t n_p_eval; // number of prompt tokens
+ int32_t n_eval; // number of generated tokens
+ int32_t n_reused; // number of times a ggml compute graph had been reused
};
struct llama_perf_sampler_data {
- double t_sample_ms;
+ double t_sample_ms; // time needed for sampling in ms
- int32_t n_sample;
+ int32_t n_sample; // number of sampled tokens
};
LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
+ // print a breakdown of per-device memory use via LLAMA_LOG:
+ LLAMA_API void llama_memory_breakdown_print(const struct llama_context * ctx);
+
//
// training
//
n_reused = 0;
}
+std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> llama_context::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> ret;
+ for (const auto & buft_size : model.memory_breakdown()) {
+ ret[buft_size.first].model += buft_size.second;
+ }
+ for (const auto & buft_size : memory->memory_breakdown()) {
+ ret[buft_size.first].context += buft_size.second;
+ }
+ for (const auto & backend_ptr : backends) {
+ ggml_backend_t backend = backend_ptr.get();
+ ret[ggml_backend_sched_get_buffer_type(sched.get(), backend)].compute += ggml_backend_sched_get_buffer_size(sched.get(), backend);
+ }
+ return ret;
+}
+
//
// training
//
ctx->perf_reset();
}
+void llama_memory_breakdown_print(const struct llama_context * ctx) {
+ const std::vector<ggml_backend_dev_t> & devices = ctx->get_model().devices;
+
+ std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> memory_breakdown = ctx->memory_breakdown();
+
+ std::vector<std::array<std::string, 9>> table_data;
+ table_data.reserve(devices.size());
+ const std::string template_header = "%s: | %s | %s %s %s %s %s %s %s |\n";
+ const std::string template_gpu = "%s: | %s | %s = %s + (%s = %s + %s + %s) + %s |\n";
+ const std::string template_other = "%s: | %s | %s %s %s = %s + %s + %s %s |\n";
+
+ table_data.push_back({template_header, "memory breakdown [MiB]", "total", "free", "self", "model", "context", "compute", "unaccounted"});
+
+ constexpr size_t MiB = 1024 * 1024;
+ const std::vector<std::string> desc_prefixes_strip = {"NVIDIA ", "GeForce ", "Tesla ", "AMD ", "Radeon ", "Instinct "};
+
+ // track seen buffer types to avoid double counting:
+ std::set<ggml_backend_buffer_type_t> seen_buffer_types;
+
+ // accumulative memory breakdown for each device and for host:
+ std::vector<llama_memory_breakdown_data> mb_dev(devices.size());
+ llama_memory_breakdown_data mb_host;
+
+ for (const auto & buft_mb : memory_breakdown) {
+ ggml_backend_buffer_type_t buft = buft_mb.first;
+ const llama_memory_breakdown_data & mb = buft_mb.second;
+ if (ggml_backend_buft_is_host(buft)) {
+ mb_host.model += mb.model;
+ mb_host.context += mb.context;
+ mb_host.compute += mb.compute;
+ seen_buffer_types.insert(buft);
+ continue;
+ }
+ ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
+ if (dev) {
+ int i_dev = -1;
+ for (size_t i = 0; i < devices.size(); i++) {
+ if (devices[i] == dev) {
+ i_dev = i;
+ break;
+ }
+ }
+ if (i_dev != -1) {
+ mb_dev[i_dev].model += mb.model;
+ mb_dev[i_dev].context += mb.context;
+ mb_dev[i_dev].compute += mb.compute;
+ seen_buffer_types.insert(buft);
+ continue;
+ }
+ }
+ }
+
+ // print memory breakdown for each device:
+ for (size_t i = 0; i < devices.size(); i++) {
+ ggml_backend_dev_t dev = devices[i];
+ llama_memory_breakdown_data mb = mb_dev[i];
+
+ const std::string name = ggml_backend_dev_name(dev);
+ std::string desc = ggml_backend_dev_description(dev);
+ for (const std::string & prefix : desc_prefixes_strip) {
+ if (desc.length() >= prefix.length() && desc.substr(0, prefix.length()) == prefix) {
+ desc = desc.substr(prefix.length());
+ }
+ }
+
+ size_t free, total;
+ ggml_backend_dev_memory(dev, &free, &total);
+
+ const size_t self = mb.model + mb.context + mb.compute;
+ const size_t unaccounted = total - self - free;
+
+ table_data.push_back({
+ template_gpu,
+ " - " + name + " (" + desc + ")",
+ std::to_string(total / MiB),
+ std::to_string(free / MiB),
+ std::to_string(self / MiB),
+ std::to_string(mb.model / MiB),
+ std::to_string(mb.context / MiB),
+ std::to_string(mb.compute / MiB),
+ std::to_string(unaccounted / MiB)});
+ }
+
+ // print memory breakdown for host:
+ {
+ const size_t self = mb_host.model + mb_host.context + mb_host.compute;
+ table_data.push_back({
+ template_other,
+ " - Host",
+ "", // total
+ "", // free
+ std::to_string(self / MiB),
+ std::to_string(mb_host.model / MiB),
+ std::to_string(mb_host.context / MiB),
+ std::to_string(mb_host.compute / MiB),
+ ""}); // unaccounted
+ }
+
+ // print memory breakdown for all remaining buffer types:
+ for (const auto & buft_mb : memory_breakdown) {
+ ggml_backend_buffer_type_t buft = buft_mb.first;
+ const llama_memory_breakdown_data & mb = buft_mb.second;
+ if (seen_buffer_types.count(buft) == 1) {
+ continue;
+ }
+ const std::string name = ggml_backend_buft_name(buft);
+ const size_t self = mb.model + mb.context + mb.compute;
+ table_data.push_back({
+ template_other,
+ " - " + name,
+ "", // total
+ "", // free
+ std::to_string(self / MiB),
+ std::to_string(mb.model / MiB),
+ std::to_string(mb.context / MiB),
+ std::to_string(mb.compute / MiB),
+ ""}); // unaccounted
+ seen_buffer_types.insert(buft);
+ }
+
+ for (size_t j = 1; j < table_data[0].size(); j++) {
+ size_t max_len = 0;
+ for (const auto & td : table_data) {
+ max_len = std::max(max_len, td[j].length());
+ }
+ for (auto & td : table_data) {
+ td[j].insert(j == 1 ? td[j].length() : 0, max_len - td[j].length(), ' ');
+ }
+ }
+ for (const auto & td : table_data) {
+ LLAMA_LOG_INFO(td[0].c_str(),
+ __func__, td[1].c_str(), td[2].c_str(), td[3].c_str(), td[4].c_str(), td[5].c_str(),
+ td[6].c_str(), td[7].c_str(), td[8].c_str());
+ }
+}
+
//
// training
//
class llama_io_read_i;
class llama_io_write_i;
+// "memory" as in abstract memory for the context
struct llama_memory_i;
struct llama_memory_context_i;
+// "memory" as in physical memory for a buffer type, in bytes
+struct llama_memory_breakdown_data {
+ size_t model = 0; // memory allocated for the model
+ size_t context = 0; // memory allocated for the context
+ size_t compute = 0; // memory allocated for temporary compute buffers
+};
+
struct llama_context {
// init scheduler and compute buffers, reserve worst-case graphs
llama_context(
llama_perf_context_data perf_get_data() const;
void perf_reset();
+ std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> memory_breakdown() const;
+
//
// training
//
return kv_swa->seq_pos_max(seq_id);
}
+std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache_iswa::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, size_t> mb = kv_base->memory_breakdown();
+ for (const auto & buft_size : kv_swa->memory_breakdown()) {
+ mb[buft_size.first] += buft_size.second;
+ }
+ return mb;
+}
+
llama_memory_context_ptr llama_kv_cache_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
GGML_UNUSED(embd_all);
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
+ std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
+
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
return cells.seq_pos_max(seq_id);
}
+std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, size_t> ret;
+ for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
+ ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
+ }
+ return ret;
+}
+
llama_memory_context_ptr llama_kv_cache::init_batch(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
+ std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
+
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
}
+std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
+ for (const auto & buft_size : mem_recr->memory_breakdown()) {
+ mb[buft_size.first] += buft_size.second;
+ }
+ return mb;
+}
+
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
GGML_UNUSED(flags);
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
+ std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
+
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
return result;
}
+std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, size_t> ret;
+ for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
+ ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
+ }
+ return ret;
+}
+
llama_memory_context_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
do {
balloc.split_reset();
#include "llama-graph.h"
#include "llama-memory.h"
+#include <map>
#include <set>
#include <vector>
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
+ std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
+
bool prepare(const std::vector<llama_ubatch> & ubatches);
// find a contiguous slot of memory cells and emplace the ubatch there
#include "llama.h"
+#include <map>
#include <memory>
#include <functional>
virtual llama_pos seq_pos_min(llama_seq_id seq_id) const = 0;
virtual llama_pos seq_pos_max(llama_seq_id seq_id) const = 0;
+ virtual std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const = 0;
+
//
// state write/read
//
return devices.size();
}
+std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
+ std::map<ggml_backend_buffer_type_t, size_t> ret;
+ for (const ggml_backend_buffer_ptr & buf_ptr : pimpl->bufs) {
+ ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
+ }
+ return ret;
+}
+
uint64_t llama_model::n_elements() const {
return pimpl->n_elements;
}
#include "llama-memory.h"
#include "llama-vocab.h"
+#include <map>
#include <memory>
#include <string>
#include <unordered_map>
std::string desc() const;
- size_t size() const;
+ size_t size() const; // file size
size_t n_tensors() const;
size_t n_devices() const;
+ std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const;
+
// total number of parameters in the model
uint64_t n_elements() const;
LOG("\n");
llama_perf_context_print(ctx);
+ llama_memory_breakdown_print(ctx);
llama_backend_free();