]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama: Add support for Gemma2ForCausalLM (#8156)
authorpculliton <redacted>
Fri, 28 Jun 2024 04:00:43 +0000 (00:00 -0400)
committerGitHub <redacted>
Fri, 28 Jun 2024 04:00:43 +0000 (21:00 -0700)
* Inference support for Gemma 2 model family

* Update convert-hf-to-gguf.py, constants, and tensor mappings

* cleanup

* format fix

* Fix special token vocab bug

* Don't add space prefix

* fix deleted lines

* Update src/llama.cpp

Co-authored-by: slaren <redacted>
* Add model type names

* Add control vector

* Fix model type identification

---------

Co-authored-by: Andrei Betlen <redacted>
Co-authored-by: slaren <redacted>
convert-hf-to-gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama.cpp

index 5bf69ef9fa06079cfe4ac92bb30783316a96686b..5bcc849db999d49ca962e86f018d354e985e3220 100755 (executable)
@@ -2340,6 +2340,46 @@ class GemmaModel(Model):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@Model.register("Gemma2ForCausalLM")
+class Gemma2Model(Model):
+    model_arch = gguf.MODEL_ARCH.GEMMA2
+
+    def set_vocab(self):
+        self._set_vocab_llama_hf()
+        self.gguf_writer.add_add_space_prefix(False)
+
+    def set_gguf_parameters(self):
+        hparams = self.hparams
+        block_count = hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
+        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_key_length(hparams["head_dim"])
+        self.gguf_writer.add_value_length(hparams["head_dim"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        del bid  # unusem
+
+        # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
+        # To prevent errors, skip loading lm_head.weight.
+        if name == "lm_head.weight":
+            logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
+            return []
+
+        # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+        if name.endswith("norm.weight"):
+            data_torch = data_torch + 1
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+
 @Model.register("Starcoder2ForCausalLM")
 class StarCoder2Model(Model):
     model_arch = gguf.MODEL_ARCH.STARCODER2
index 222a2d137b08f672b2a8994363d4980803f25a27..cf3d09e70d3e76477ac959d8b338b1d9e1ea3c6f 100644 (file)
@@ -150,6 +150,7 @@ class MODEL_ARCH(IntEnum):
     INTERNLM2    = auto()
     MINICPM      = auto()
     GEMMA        = auto()
+    GEMMA2       = auto()
     STARCODER2   = auto()
     MAMBA        = auto()
     XVERSE       = auto()
@@ -180,10 +181,13 @@ class MODEL_TENSOR(IntEnum):
     ATTN_NORM            = auto()
     ATTN_NORM_2          = auto()
     ATTN_OUT_NORM        = auto()
+    ATTN_POST_NORM       = auto()
     ATTN_ROT_EMBD        = auto()
     FFN_GATE_INP         = auto()
     FFN_GATE_INP_SHEXP   = auto()
     FFN_NORM             = auto()
+    FFN_PRE_NORM         = auto()
+    FFN_POST_NORM        = auto()
     FFN_GATE             = auto()
     FFN_DOWN             = auto()
     FFN_UP               = auto()
@@ -270,6 +274,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.INTERNLM2:      "internlm2",
     MODEL_ARCH.MINICPM:        "minicpm",
     MODEL_ARCH.GEMMA:          "gemma",
+    MODEL_ARCH.GEMMA2:         "gemma2",
     MODEL_ARCH.STARCODER2:     "starcoder2",
     MODEL_ARCH.MAMBA:          "mamba",
     MODEL_ARCH.XVERSE:         "xverse",
@@ -303,9 +308,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
     MODEL_TENSOR.ATTN_Q_NORM:          "blk.{bid}.attn_q_norm",
     MODEL_TENSOR.ATTN_K_NORM:          "blk.{bid}.attn_k_norm",
     MODEL_TENSOR.ATTN_OUT_NORM:        "blk.{bid}.attn_output_norm",
+    MODEL_TENSOR.ATTN_POST_NORM:       "blk.{bid}.post_attention_norm",
     MODEL_TENSOR.FFN_GATE_INP:         "blk.{bid}.ffn_gate_inp",
     MODEL_TENSOR.FFN_GATE_INP_SHEXP:   "blk.{bid}.ffn_gate_inp_shexp",
     MODEL_TENSOR.FFN_NORM:             "blk.{bid}.ffn_norm",
+    MODEL_TENSOR.FFN_PRE_NORM:         "blk.{bid}.ffn_norm",
+    MODEL_TENSOR.FFN_POST_NORM:        "blk.{bid}.post_ffw_norm",
     MODEL_TENSOR.FFN_GATE:             "blk.{bid}.ffn_gate",
     MODEL_TENSOR.FFN_DOWN:             "blk.{bid}.ffn_down",
     MODEL_TENSOR.FFN_UP:               "blk.{bid}.ffn_up",
@@ -751,6 +759,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_UP,
         MODEL_TENSOR.FFN_NORM,
     ],
+    MODEL_ARCH.GEMMA2: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.FFN_PRE_NORM,
+        MODEL_TENSOR.FFN_POST_NORM,
+    ],
     MODEL_ARCH.STARCODER2: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index 7b047f241e08823fe2c3331cb3852fc181de3f41..0bed439397bcdbba3f28558a212de2aca3145157 100644 (file)
@@ -187,6 +187,10 @@ class TensorNameMap:
             "transformer.blocks.{bid}.norm_attn_norm.norm_2",  # dbrx
         ),
 
+        MODEL_TENSOR.ATTN_POST_NORM: (
+            "model.layers.{bid}.post_attention_layernorm",     # gemma2
+        ),
+
         # Rotary embeddings
         MODEL_TENSOR.ATTN_ROT_EMBD: (
             "model.layers.{bid}.self_attn.rotary_emb.inv_freq",        # llama-hf
@@ -210,6 +214,16 @@ class TensorNameMap:
             "transformer.decoder_layer.{bid}.rms_norm_2",                    # Grok
         ),
 
+        # Post feed-forward norm
+        MODEL_TENSOR.FFN_PRE_NORM: (
+            "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
+        ),
+
+        # Post feed-forward norm
+        MODEL_TENSOR.FFN_POST_NORM: (
+            "model.layers.{bid}.post_feedforward_layernorm", # gemma2
+        ),
+
         MODEL_TENSOR.FFN_GATE_INP: (
             "layers.{bid}.feed_forward.gate",             # mixtral
             "model.layers.{bid}.block_sparse_moe.gate",   # mixtral
index 3dc0f85351c5054b91beaa2c57b10e8290ed598e..988ed4fdfc55d364a1a65c9441124d59fdf3bf56 100644 (file)
@@ -217,6 +217,7 @@ enum llm_arch {
     LLM_ARCH_INTERNLM2,
     LLM_ARCH_MINICPM,
     LLM_ARCH_GEMMA,
+    LLM_ARCH_GEMMA2,
     LLM_ARCH_STARCODER2,
     LLM_ARCH_MAMBA,
     LLM_ARCH_XVERSE,
@@ -257,6 +258,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_INTERNLM2,       "internlm2"    },
     { LLM_ARCH_MINICPM,         "minicpm"      },
     { LLM_ARCH_GEMMA,           "gemma"        },
+    { LLM_ARCH_GEMMA2,          "gemma2"       },
     { LLM_ARCH_STARCODER2,      "starcoder2"   },
     { LLM_ARCH_MAMBA,           "mamba"        },
     { LLM_ARCH_XVERSE,          "xverse"       },
@@ -478,10 +480,12 @@ enum llm_tensor {
     LLM_TENSOR_ATTN_NORM,
     LLM_TENSOR_ATTN_NORM_2,
     LLM_TENSOR_ATTN_OUT_NORM,
+    LLM_TENSOR_ATTN_POST_NORM,
     LLM_TENSOR_ATTN_ROT_EMBD,
     LLM_TENSOR_FFN_GATE_INP,
     LLM_TENSOR_FFN_GATE_INP_SHEXP,
     LLM_TENSOR_FFN_NORM,
+    LLM_TENSOR_FFN_POST_NORM,
     LLM_TENSOR_FFN_GATE,
     LLM_TENSOR_FFN_DOWN,
     LLM_TENSOR_FFN_UP,
@@ -1004,6 +1008,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_GEMMA2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+        },
+    },
     {
         LLM_ARCH_STARCODER2,
         {
@@ -2039,6 +2061,8 @@ enum e_model {
     MODEL_16x12B,
     MODEL_10B_128x3_66B,
     MODEL_57B_A14B,
+    MODEL_9B,
+    MODEL_27B,
 };
 
 static const size_t kiB = 1024;
@@ -2215,6 +2239,7 @@ struct llama_layer {
     struct ggml_tensor * attn_q_a_norm;
     struct ggml_tensor * attn_kv_a_norm;
     struct ggml_tensor * attn_sub_norm;
+    struct ggml_tensor * attn_post_norm;
     struct ggml_tensor * ffn_sub_norm;
 
     // attention
@@ -2238,6 +2263,7 @@ struct llama_layer {
     // normalization
     struct ggml_tensor * ffn_norm;
     struct ggml_tensor * ffn_norm_b;
+    struct ggml_tensor * ffn_post_norm;
     struct ggml_tensor * layer_out_norm;
     struct ggml_tensor * layer_out_norm_b;
     struct ggml_tensor * ffn_norm_exps;
@@ -4269,6 +4295,8 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_16x12B:        return "16x12B";
         case MODEL_10B_128x3_66B: return "10B+128x3.66B";
         case MODEL_57B_A14B:      return "57B.A14B";
+        case MODEL_9B:            return "9B";
+        case MODEL_27B:           return "27B";
         default:                  return "?B";
     }
 }
@@ -4671,6 +4699,16 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                }
             } break;
+        case LLM_ARCH_GEMMA2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 42: model.type = e_model::MODEL_9B; break;
+                    case 46: model.type = e_model::MODEL_27B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+               }
+            } break;
         case LLM_ARCH_STARCODER2:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -6512,6 +6550,40 @@ static bool llm_load_tensors(
                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                     }
                 } break;
+            case LLM_ARCH_GEMMA2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+                    const int64_t n_ff          = hparams.n_ff;
+                    const int64_t n_embd_head_k = hparams.n_embd_head_k;
+                    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
+                    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
+
+                    for (uint32_t i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+                        layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+                    }
+                } break;
             case LLM_ARCH_STARCODER2:
                 {
                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -10923,6 +10995,125 @@ struct llm_build_context {
         return gf;
     }
 
+    struct ggml_cgraph * build_gemma2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
+                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur", il);
+
+                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+                cb(Qcur, "Qcur_scaled", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                    model.layers[il].attn_post_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_post_norm", il);
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+            cb(sa_out, "sa_out", il);
+
+            cur = llm_build_norm(ctx0, sa_out, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                model.layers[il].ffn_post_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+            cb(cur, "ffn_post_norm", -1);
+
+            cur = ggml_add(ctx0, cur, sa_out);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+
     struct ggml_cgraph * build_starcoder2() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 
@@ -12303,6 +12494,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_gemma();
             } break;
+        case LLM_ARCH_GEMMA2:
+            {
+                result = llm.build_gemma2();
+            } break;
         case LLM_ARCH_STARCODER2:
             {
                 result = llm.build_starcoder2();
@@ -17597,6 +17792,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_PHI2:
         case LLM_ARCH_PHI3:
         case LLM_ARCH_GEMMA:
+        case LLM_ARCH_GEMMA2:
         case LLM_ARCH_STARCODER2:
         case LLM_ARCH_GPTNEOX:
             return LLAMA_ROPE_TYPE_NEOX;
@@ -19486,7 +19682,7 @@ static int32_t llama_chat_apply_template_internal(
         if (add_ass) {
             ss << "<s>assistant\n";
         }
-    } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
+    } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
         // google/gemma-7b-it
         std::string system_prompt = "";
         for (auto message : chat) {