-add_library(ggml_utils STATIC utils.cpp)
-target_include_directories(ggml_utils PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
+add_library(common STATIC common.cpp)
+target_include_directories(common PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
+
+add_library(common-ggml STATIC common-ggml.cpp)
+target_include_directories(common-ggml PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
add_subdirectory(gpt-2)
add_subdirectory(gpt-j)
--- /dev/null
+#include "common-ggml.h"
--- /dev/null
+#pragma once
+
--- /dev/null
+#include "common.h"
+
+// third-party utilities
+// use your favorite implementations
+#define DR_WAV_IMPLEMENTATION
+#include "dr_wav.h"
+
+#include <cmath>
+#include <fstream>
+#include <regex>
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
+ for (int i = 1; i < argc; i++) {
+ std::string arg = argv[i];
+
+ if (arg == "-s" || arg == "--seed") {
+ params.seed = std::stoi(argv[++i]);
+ } else if (arg == "-t" || arg == "--threads") {
+ params.n_threads = std::stoi(argv[++i]);
+ } else if (arg == "-p" || arg == "--prompt") {
+ params.prompt = argv[++i];
+ } else if (arg == "-n" || arg == "--n_predict") {
+ params.n_predict = std::stoi(argv[++i]);
+ } else if (arg == "--top_k") {
+ params.top_k = std::stoi(argv[++i]);
+ } else if (arg == "--top_p") {
+ params.top_p = std::stof(argv[++i]);
+ } else if (arg == "--temp") {
+ params.temp = std::stof(argv[++i]);
+ } else if (arg == "-b" || arg == "--batch_size") {
+ params.n_batch = std::stoi(argv[++i]);
+ } else if (arg == "-m" || arg == "--model") {
+ params.model = argv[++i];
+ } else if (arg == "-h" || arg == "--help") {
+ gpt_print_usage(argc, argv, params);
+ exit(0);
+ } else {
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
+ gpt_print_usage(argc, argv, params);
+ exit(0);
+ }
+ }
+
+ return true;
+}
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
+ fprintf(stderr, "usage: %s [options]\n", argv[0]);
+ fprintf(stderr, "\n");
+ fprintf(stderr, "options:\n");
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
+ fprintf(stderr, " prompt to start generation with (default: random)\n");
+ fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
+ fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
+ fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
+ fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
+ fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
+ fprintf(stderr, " -m FNAME, --model FNAME\n");
+ fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
+ fprintf(stderr, "\n");
+}
+
+std::string gpt_random_prompt(std::mt19937 & rng) {
+ const int r = rng() % 10;
+ switch (r) {
+ case 0: return "So";
+ case 1: return "Once upon a time";
+ case 2: return "When";
+ case 3: return "The";
+ case 4: return "After";
+ case 5: return "If";
+ case 6: return "import";
+ case 7: return "He";
+ case 8: return "She";
+ case 9: return "They";
+ default: return "To";
+ }
+
+ return "The";
+}
+
+std::string trim(const std::string & s) {
+ std::regex e("^\\s+|\\s+$");
+ return std::regex_replace(s, e, "");
+}
+
+std::string replace(const std::string & s, const std::string & from, const std::string & to) {
+ std::string result = s;
+ size_t pos = 0;
+ while ((pos = result.find(from, pos)) != std::string::npos) {
+ result.replace(pos, from.length(), to);
+ pos += to.length();
+ }
+ return result;
+}
+
+std::map<std::string, int32_t> json_parse(const std::string & fname) {
+ std::map<std::string, int32_t> result;
+
+ // read file into string
+ std::string json;
+ {
+ std::ifstream ifs(fname);
+ if (!ifs) {
+ fprintf(stderr, "Failed to open %s\n", fname.c_str());
+ exit(1);
+ }
+
+ json = std::string((std::istreambuf_iterator<char>(ifs)),
+ (std::istreambuf_iterator<char>()));
+ }
+
+ if (json[0] != '{') {
+ return result;
+ }
+
+ // parse json
+ {
+ bool has_key = false;
+ bool in_token = false;
+
+ std::string str_key = "";
+ std::string str_val = "";
+
+ int n = json.size();
+ for (int i = 1; i < n; ++i) {
+ if (!in_token) {
+ if (json[i] == ' ') continue;
+ if (json[i] == '"') {
+ in_token = true;
+ continue;
+ }
+ } else {
+ if (json[i] == '\\' && i+1 < n) {
+ if (has_key == false) {
+ str_key += json[i];
+ } else {
+ str_val += json[i];
+ }
+ ++i;
+ } else if (json[i] == '"') {
+ if (has_key == false) {
+ has_key = true;
+ ++i;
+ while (json[i] == ' ') ++i;
+ ++i; // :
+ while (json[i] == ' ') ++i;
+ if (json[i] != '\"') {
+ while (json[i] != ',' && json[i] != '}') {
+ str_val += json[i++];
+ }
+ has_key = false;
+ } else {
+ in_token = true;
+ continue;
+ }
+ } else {
+ has_key = false;
+ }
+
+ str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
+ str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
+ str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
+
+ try {
+ result[str_key] = std::stoi(str_val);
+ } catch (...) {
+ //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
+
+ }
+ str_key = "";
+ str_val = "";
+ in_token = false;
+ continue;
+ }
+ if (has_key == false) {
+ str_key += json[i];
+ } else {
+ str_val += json[i];
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
+ std::vector<std::string> words;
+
+ // first split the text into words
+ {
+ std::string str = text;
+ std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
+
+ std::regex re(pat);
+ std::smatch m;
+
+ while (std::regex_search(str, m, re)) {
+ for (auto x : m) {
+ words.push_back(x);
+ }
+ str = m.suffix();
+ }
+ }
+
+ // find the longest tokens that form the words:
+ std::vector<gpt_vocab::id> tokens;
+ for (const auto & word : words) {
+ if (word.size() == 0) continue;
+
+ int i = 0;
+ int n = word.size();
+ while (i < n) {
+ int j = n;
+ while (j > i) {
+ auto it = vocab.token_to_id.find(word.substr(i, j-i));
+ if (it != vocab.token_to_id.end()) {
+ tokens.push_back(it->second);
+ i = j;
+ break;
+ }
+ --j;
+ }
+ if (i == n) {
+ break;
+ }
+ if (j == i) {
+ auto sub = word.substr(i, 1);
+ if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
+ tokens.push_back(vocab.token_to_id.at(sub));
+ } else {
+ fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
+ }
+ ++i;
+ }
+ }
+ }
+
+ return tokens;
+}
+
+bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
+ printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
+
+ vocab.token_to_id = ::json_parse(fname);
+
+ for (const auto & kv : vocab.token_to_id) {
+ vocab.id_to_token[kv.second] = kv.first;
+ }
+
+ printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
+
+ // print the vocabulary
+ //for (auto kv : vocab.token_to_id) {
+ // printf("'%s' -> %d\n", kv.first.data(), kv.second);
+ //}
+
+ return true;
+}
+
+gpt_vocab::id gpt_sample_top_k_top_p(
+ const gpt_vocab & vocab,
+ const float * logits,
+ int top_k,
+ double top_p,
+ double temp,
+ std::mt19937 & rng) {
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, gpt_vocab::id>> logits_id;
+ logits_id.reserve(n_logits);
+
+ {
+ const double scale = 1.0/temp;
+ for (int i = 0; i < n_logits; ++i) {
+ logits_id.push_back(std::make_pair(logits[i]*scale, i));
+ }
+ }
+
+ // find the top K tokens
+ std::partial_sort(
+ logits_id.begin(),
+ logits_id.begin() + top_k, logits_id.end(),
+ [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ logits_id.resize(top_k);
+
+ double maxl = -INFINITY;
+ for (const auto & kv : logits_id) {
+ maxl = std::max(maxl, kv.first);
+ }
+
+ // compute probs for the top K tokens
+ std::vector<double> probs;
+ probs.reserve(logits_id.size());
+
+ double sum = 0.0;
+ for (const auto & kv : logits_id) {
+ double p = exp(kv.first - maxl);
+ probs.push_back(p);
+ sum += p;
+ }
+
+ // normalize the probs
+ for (auto & p : probs) {
+ p /= sum;
+ }
+
+ if (top_p < 1.0f) {
+ double cumsum = 0.0f;
+ for (int i = 0; i < top_k; i++) {
+ cumsum += probs[i];
+ if (cumsum >= top_p) {
+ top_k = i + 1;
+ probs.resize(top_k);
+ logits_id.resize(top_k);
+ break;
+ }
+ }
+
+ cumsum = 1.0/cumsum;
+ for (int i = 0; i < (int) probs.size(); i++) {
+ probs[i] *= cumsum;
+ }
+ }
+
+ //printf("\n");
+ //for (int i = 0; i < (int) probs.size(); i++) {
+ // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
+ //}
+ //exit(0);
+
+ std::discrete_distribution<> dist(probs.begin(), probs.end());
+ int idx = dist(rng);
+
+ return logits_id[idx].second;
+}
+
+bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
+ drwav wav;
+ std::vector<uint8_t> wav_data; // used for pipe input from stdin
+
+ if (fname == "-") {
+ {
+ uint8_t buf[1024];
+ while (true)
+ {
+ const size_t n = fread(buf, 1, sizeof(buf), stdin);
+ if (n == 0) {
+ break;
+ }
+ wav_data.insert(wav_data.end(), buf, buf + n);
+ }
+ }
+
+ if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
+ fprintf(stderr, "error: failed to open WAV file from stdin\n");
+ return false;
+ }
+
+ fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
+ }
+ else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
+ fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
+ return false;
+ }
+
+ if (wav.channels != 1 && wav.channels != 2) {
+ fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
+ return false;
+ }
+
+ if (stereo && wav.channels != 2) {
+ fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
+ return false;
+ }
+
+ if (wav.sampleRate != COMMON_SAMPLE_RATE) {
+ fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
+ return false;
+ }
+
+ if (wav.bitsPerSample != 16) {
+ fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
+ return false;
+ }
+
+ const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
+
+ std::vector<int16_t> pcm16;
+ pcm16.resize(n*wav.channels);
+ drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
+ drwav_uninit(&wav);
+
+ // convert to mono, float
+ pcmf32.resize(n);
+ if (wav.channels == 1) {
+ for (uint64_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[i])/32768.0f;
+ }
+ } else {
+ for (uint64_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
+ }
+ }
+
+ if (stereo) {
+ // convert to stereo, float
+ pcmf32s.resize(2);
+
+ pcmf32s[0].resize(n);
+ pcmf32s[1].resize(n);
+ for (uint64_t i = 0; i < n; i++) {
+ pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
+ pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
+ }
+ }
+
+ return true;
+}
+
+void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
+ const float rc = 1.0f / (2.0f * M_PI * cutoff);
+ const float dt = 1.0f / sample_rate;
+ const float alpha = dt / (rc + dt);
+
+ float y = data[0];
+
+ for (size_t i = 1; i < data.size(); i++) {
+ y = alpha * (y + data[i] - data[i - 1]);
+ data[i] = y;
+ }
+}
+
+bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
+ const int n_samples = pcmf32.size();
+ const int n_samples_last = (sample_rate * last_ms) / 1000;
+
+ if (n_samples_last >= n_samples) {
+ // not enough samples - assume no speech
+ return false;
+ }
+
+ if (freq_thold > 0.0f) {
+ high_pass_filter(pcmf32, freq_thold, sample_rate);
+ }
+
+ float energy_all = 0.0f;
+ float energy_last = 0.0f;
+
+ for (int i = 0; i < n_samples; i++) {
+ energy_all += fabsf(pcmf32[i]);
+
+ if (i >= n_samples - n_samples_last) {
+ energy_last += fabsf(pcmf32[i]);
+ }
+ }
+
+ energy_all /= n_samples;
+ energy_last /= n_samples_last;
+
+ if (verbose) {
+ fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
+ }
+
+ if (energy_last > vad_thold*energy_all) {
+ return false;
+ }
+
+ return true;
+}
--- /dev/null
+// Various helper functions and utilities
+
+#pragma once
+
+#include <string>
+#include <map>
+#include <vector>
+#include <random>
+#include <thread>
+
+#define COMMON_SAMPLE_RATE 16000
+
+//
+// CLI argument parsing
+//
+
+struct gpt_params {
+ int32_t seed = -1; // RNG seed
+ int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
+ int32_t n_predict = 200; // new tokens to predict
+
+ // sampling parameters
+ int32_t top_k = 40;
+ float top_p = 0.9f;
+ float temp = 0.9f;
+
+ int32_t n_batch = 8; // batch size for prompt processing
+
+ std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
+ std::string prompt;
+};
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+
+std::string gpt_random_prompt(std::mt19937 & rng);
+
+//
+// Vocab utils
+//
+
+std::string trim(const std::string & s);
+
+std::string replace(
+ const std::string & s,
+ const std::string & from,
+ const std::string & to);
+
+struct gpt_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ std::map<token, id> token_to_id;
+ std::map<id, token> id_to_token;
+};
+
+// poor-man's JSON parsing
+std::map<std::string, int32_t> json_parse(const std::string & fname);
+
+// split text into tokens
+//
+// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
+//
+// Regex (Python):
+// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
+//
+// Regex (C++):
+// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
+//
+std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
+
+// load the tokens from encoder.json
+bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
+
+// sample next token given probabilities for each embedding
+//
+// - consider only the top K tokens
+// - from them, consider only the top tokens with cumulative probability > P
+//
+// TODO: not sure if this implementation is correct
+// TODO: temperature is not implemented
+//
+gpt_vocab::id gpt_sample_top_k_top_p(
+ const gpt_vocab & vocab,
+ const float * logits,
+ int top_k,
+ double top_p,
+ double temp,
+ std::mt19937 & rng);
+
+//
+// Audio utils
+//
+
+// Read WAV audio file and store the PCM data into pcmf32
+// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
+// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
+bool read_wav(
+ const std::string & fname,
+ std::vector<float> & pcmf32,
+ std::vector<std::vector<float>> & pcmf32s,
+ bool stereo);
+
+// Apply a high-pass frequency filter to PCM audio
+// Suppresses frequencies below cutoff Hz
+void high_pass_filter(
+ std::vector<float> & data,
+ float cutoff,
+ float sample_rate);
+
+// Basic voice activity detection (VAD) using audio energy adaptive threshold
+bool vad_simple(
+ std::vector<float> & pcmf32,
+ int sample_rate,
+ int last_ms,
+ float vad_thold,
+ float freq_thold,
+ bool verbose);
+
set(TEST_TARGET gpt-2)
add_executable(${TEST_TARGET} main.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#
# gpt-2-quantize
set(TEST_TARGET gpt-2-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
set(TEST_TARGET gpt-j)
add_executable(${TEST_TARGET} main.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#
# gpt-j-quantize
set(TEST_TARGET gpt-j-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
set(TEST_TARGET mnist)
add_executable(${TEST_TARGET} main.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
set(TEST_TARGET stablelm)
add_executable(${TEST_TARGET} main.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#
# stablelm-quantize
set(TEST_TARGET stablelm-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>
+++ /dev/null
-#include "utils.h"
-
-#include <fstream>
-#include <regex>
-
-bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
- for (int i = 1; i < argc; i++) {
- std::string arg = argv[i];
-
- if (arg == "-s" || arg == "--seed") {
- params.seed = std::stoi(argv[++i]);
- } else if (arg == "-t" || arg == "--threads") {
- params.n_threads = std::stoi(argv[++i]);
- } else if (arg == "-p" || arg == "--prompt") {
- params.prompt = argv[++i];
- } else if (arg == "-n" || arg == "--n_predict") {
- params.n_predict = std::stoi(argv[++i]);
- } else if (arg == "--top_k") {
- params.top_k = std::stoi(argv[++i]);
- } else if (arg == "--top_p") {
- params.top_p = std::stof(argv[++i]);
- } else if (arg == "--temp") {
- params.temp = std::stof(argv[++i]);
- } else if (arg == "-b" || arg == "--batch_size") {
- params.n_batch = std::stoi(argv[++i]);
- } else if (arg == "-m" || arg == "--model") {
- params.model = argv[++i];
- } else if (arg == "-h" || arg == "--help") {
- gpt_print_usage(argc, argv, params);
- exit(0);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- gpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
-
- return true;
-}
-
-void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
- fprintf(stderr, " prompt to start generation with (default: random)\n");
- fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
- fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
- fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
- fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
- fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, "\n");
-}
-
-std::string gpt_random_prompt(std::mt19937 & rng) {
- const int r = rng() % 10;
- switch (r) {
- case 0: return "So";
- case 1: return "Once upon a time";
- case 2: return "When";
- case 3: return "The";
- case 4: return "After";
- case 5: return "If";
- case 6: return "import";
- case 7: return "He";
- case 8: return "She";
- case 9: return "They";
- default: return "To";
- }
-
- return "The";
-}
-
-void replace(std::string & str, const std::string & needle, const std::string & replacement) {
- size_t pos = 0;
- while ((pos = str.find(needle, pos)) != std::string::npos) {
- str.replace(pos, needle.length(), replacement);
- pos += replacement.length();
- }
-}
-
-std::map<std::string, int32_t> json_parse(const std::string & fname) {
- std::map<std::string, int32_t> result;
-
- // read file into string
- std::string json;
- {
- std::ifstream ifs(fname);
- if (!ifs) {
- fprintf(stderr, "Failed to open %s\n", fname.c_str());
- exit(1);
- }
-
- json = std::string((std::istreambuf_iterator<char>(ifs)),
- (std::istreambuf_iterator<char>()));
- }
-
- if (json[0] != '{') {
- return result;
- }
-
- // parse json
- {
- bool has_key = false;
- bool in_token = false;
-
- std::string str_key = "";
- std::string str_val = "";
-
- int n = json.size();
- for (int i = 1; i < n; ++i) {
- if (!in_token) {
- if (json[i] == ' ') continue;
- if (json[i] == '"') {
- in_token = true;
- continue;
- }
- } else {
- if (json[i] == '\\' && i+1 < n) {
- if (has_key == false) {
- str_key += json[i];
- } else {
- str_val += json[i];
- }
- ++i;
- } else if (json[i] == '"') {
- if (has_key == false) {
- has_key = true;
- ++i;
- while (json[i] == ' ') ++i;
- ++i; // :
- while (json[i] == ' ') ++i;
- if (json[i] != '\"') {
- while (json[i] != ',' && json[i] != '}') {
- str_val += json[i++];
- }
- has_key = false;
- } else {
- in_token = true;
- continue;
- }
- } else {
- has_key = false;
- }
-
- ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
- ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
- ::replace(str_key, "\\\"", "\""); // \\\" -> "
-
- try {
- result[str_key] = std::stoi(str_val);
- } catch (...) {
- //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
-
- }
- str_key = "";
- str_val = "";
- in_token = false;
- continue;
- }
- if (has_key == false) {
- str_key += json[i];
- } else {
- str_val += json[i];
- }
- }
- }
- }
-
- return result;
-}
-
-std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
- std::vector<std::string> words;
-
- // first split the text into words
- {
- std::string str = text;
- std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
-
- std::regex re(pat);
- std::smatch m;
-
- while (std::regex_search(str, m, re)) {
- for (auto x : m) {
- words.push_back(x);
- }
- str = m.suffix();
- }
- }
-
- // find the longest tokens that form the words:
- std::vector<gpt_vocab::id> tokens;
- for (const auto & word : words) {
- if (word.size() == 0) continue;
-
- int i = 0;
- int n = word.size();
- while (i < n) {
- int j = n;
- while (j > i) {
- auto it = vocab.token_to_id.find(word.substr(i, j-i));
- if (it != vocab.token_to_id.end()) {
- tokens.push_back(it->second);
- i = j;
- break;
- }
- --j;
- }
- if (i == n) {
- break;
- }
- if (j == i) {
- auto sub = word.substr(i, 1);
- if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
- tokens.push_back(vocab.token_to_id.at(sub));
- } else {
- fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
- }
- ++i;
- }
- }
- }
-
- return tokens;
-}
-
-bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
- printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
-
- vocab.token_to_id = ::json_parse(fname);
-
- for (const auto & kv : vocab.token_to_id) {
- vocab.id_to_token[kv.second] = kv.first;
- }
-
- printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
-
- // print the vocabulary
- //for (auto kv : vocab.token_to_id) {
- // printf("'%s' -> %d\n", kv.first.data(), kv.second);
- //}
-
- return true;
-}
-
-gpt_vocab::id gpt_sample_top_k_top_p(
- const gpt_vocab & vocab,
- const float * logits,
- int top_k,
- double top_p,
- double temp,
- std::mt19937 & rng) {
- int n_logits = vocab.id_to_token.size();
-
- std::vector<std::pair<double, gpt_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
-
- {
- const double scale = 1.0/temp;
- for (int i = 0; i < n_logits; ++i) {
- logits_id.push_back(std::make_pair(logits[i]*scale, i));
- }
- }
-
- // find the top K tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
- return a.first > b.first;
- });
-
- logits_id.resize(top_k);
-
- double maxl = -INFINITY;
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
-
- // compute probs for the top K tokens
- std::vector<double> probs;
- probs.reserve(logits_id.size());
-
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- double p = exp(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
-
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
-
- if (top_p < 1.0f) {
- double cumsum = 0.0f;
- for (int i = 0; i < top_k; i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- top_k = i + 1;
- probs.resize(top_k);
- logits_id.resize(top_k);
- break;
- }
- }
-
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
- }
-
- //printf("\n");
- //for (int i = 0; i < (int) probs.size(); i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
- //}
- //exit(0);
-
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
-
- return logits_id[idx].second;
-}
+++ /dev/null
-// Various helper functions and utilities
-
-#pragma once
-
-#include <string>
-#include <map>
-#include <vector>
-#include <random>
-#include <thread>
-
-//
-// CLI argument parsing
-//
-
-struct gpt_params {
- int32_t seed = -1; // RNG seed
- int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
- int32_t n_predict = 200; // new tokens to predict
-
- // sampling parameters
- int32_t top_k = 40;
- float top_p = 0.9f;
- float temp = 0.9f;
-
- int32_t n_batch = 8; // batch size for prompt processing
-
- std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
- std::string prompt;
-};
-
-bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
-
-void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
-
-std::string gpt_random_prompt(std::mt19937 & rng);
-
-//
-// Vocab utils
-//
-
-struct gpt_vocab {
- using id = int32_t;
- using token = std::string;
-
- std::map<token, id> token_to_id;
- std::map<id, token> id_to_token;
-};
-
-void replace(std::string & str, const std::string & needle, const std::string & replacement);
-
-// poor-man's JSON parsing
-std::map<std::string, int32_t> json_parse(const std::string & fname);
-
-// split text into tokens
-//
-// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
-//
-// Regex (Python):
-// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
-//
-// Regex (C++):
-// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
-//
-std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
-
-// load the tokens from encoder.json
-bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
-
-// sample next token given probabilities for each embedding
-//
-// - consider only the top K tokens
-// - from them, consider only the top tokens with cumulative probability > P
-//
-// TODO: not sure if this implementation is correct
-// TODO: temperature is not implemented
-//
-gpt_vocab::id gpt_sample_top_k_top_p(
- const gpt_vocab & vocab,
- const float * logits,
- int top_k,
- double top_p,
- double temp,
- std::mt19937 & rng);
)
set(TEST_TARGET whisper)
-add_executable(${TEST_TARGET} main.cpp common.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE whisper-cpp)
+add_executable(${TEST_TARGET} main.cpp)
+target_link_libraries(${TEST_TARGET} PRIVATE whisper-cpp common)
target_include_directories(${TEST_TARGET} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/..)
#
set(TEST_TARGET whisper-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml common)
+++ /dev/null
-#include "common.h"
-
-// third-party utilities
-// use your favorite implementations
-#define DR_WAV_IMPLEMENTATION
-#include "dr_wav.h"
-
-#include <cmath>
-#include <regex>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-std::string trim(const std::string & s) {
- std::regex e("^\\s+|\\s+$");
- return std::regex_replace(s, e, "");
-}
-
-std::string replace(const std::string & s, const std::string & from, const std::string & to) {
- std::string result = s;
- size_t pos = 0;
- while ((pos = result.find(from, pos)) != std::string::npos) {
- result.replace(pos, from.length(), to);
- pos += to.length();
- }
- return result;
-}
-
-bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
- drwav wav;
- std::vector<uint8_t> wav_data; // used for pipe input from stdin
-
- if (fname == "-") {
- {
- uint8_t buf[1024];
- while (true)
- {
- const size_t n = fread(buf, 1, sizeof(buf), stdin);
- if (n == 0) {
- break;
- }
- wav_data.insert(wav_data.end(), buf, buf + n);
- }
- }
-
- if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
- fprintf(stderr, "error: failed to open WAV file from stdin\n");
- return false;
- }
-
- fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
- }
- else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
- fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
- return false;
- }
-
- if (wav.channels != 1 && wav.channels != 2) {
- fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
- return false;
- }
-
- if (stereo && wav.channels != 2) {
- fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
- return false;
- }
-
- if (wav.sampleRate != COMMON_SAMPLE_RATE) {
- fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
- return false;
- }
-
- if (wav.bitsPerSample != 16) {
- fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
- return false;
- }
-
- const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
-
- std::vector<int16_t> pcm16;
- pcm16.resize(n*wav.channels);
- drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
- drwav_uninit(&wav);
-
- // convert to mono, float
- pcmf32.resize(n);
- if (wav.channels == 1) {
- for (uint64_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[i])/32768.0f;
- }
- } else {
- for (uint64_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
- }
- }
-
- if (stereo) {
- // convert to stereo, float
- pcmf32s.resize(2);
-
- pcmf32s[0].resize(n);
- pcmf32s[1].resize(n);
- for (uint64_t i = 0; i < n; i++) {
- pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
- pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
- }
- }
-
- return true;
-}
-
-void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
- const float rc = 1.0f / (2.0f * M_PI * cutoff);
- const float dt = 1.0f / sample_rate;
- const float alpha = dt / (rc + dt);
-
- float y = data[0];
-
- for (size_t i = 1; i < data.size(); i++) {
- y = alpha * (y + data[i] - data[i - 1]);
- data[i] = y;
- }
-}
-
-bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
- const int n_samples = pcmf32.size();
- const int n_samples_last = (sample_rate * last_ms) / 1000;
-
- if (n_samples_last >= n_samples) {
- // not enough samples - assume no speech
- return false;
- }
-
- if (freq_thold > 0.0f) {
- high_pass_filter(pcmf32, freq_thold, sample_rate);
- }
-
- float energy_all = 0.0f;
- float energy_last = 0.0f;
-
- for (int i = 0; i < n_samples; i++) {
- energy_all += fabsf(pcmf32[i]);
-
- if (i >= n_samples - n_samples_last) {
- energy_last += fabsf(pcmf32[i]);
- }
- }
-
- energy_all /= n_samples;
- energy_last /= n_samples_last;
-
- if (verbose) {
- fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
- }
-
- if (energy_last > vad_thold*energy_all) {
- return false;
- }
-
- return true;
-}
+++ /dev/null
-#pragma once
-
-// needs to match WHISPER_SAMPLE_RATE
-#define COMMON_SAMPLE_RATE 16000
-
-#include <vector>
-#include <string>
-
-std::string trim(const std::string & s);
-
-std::string replace(
- const std::string & s,
- const std::string & from,
- const std::string & to);
-
-// Read WAV audio file and store the PCM data into pcmf32
-// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
-// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
-bool read_wav(
- const std::string & fname,
- std::vector<float> & pcmf32,
- std::vector<std::vector<float>> & pcmf32s,
- bool stereo);
-
-// Apply a high-pass frequency filter to PCM audio
-// Suppresses frequencies below cutoff Hz
-void high_pass_filter(
- std::vector<float> & data,
- float cutoff,
- float sample_rate);
-
-// Basic voice activity detection (VAD) using audio energy adaptive threshold
-bool vad_simple(
- std::vector<float> & pcmf32,
- int sample_rate,
- int last_ms,
- float vad_thold,
- float freq_thold,
- bool verbose);
-
#include "ggml/ggml.h"
-#include "utils.h"
+#include "common.h"
#include <cassert>
#include <cmath>