#define QK4_0 32
#define QR4_0 2
typedef struct {
- float d; // delta
+ half d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
-static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
+static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
#define QR4_1 2
typedef struct {
- float d; // delta
- float m; // min
+ half d; // delta
+ half m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
-static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
+static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
#define QR5_0 2
#define QK8_0 32
#define QR8_0 1
typedef struct {
- float d; // delta
+ half d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
-static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
+static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
-#define CUDA_DMMV_BLOCK_SIZE 32
+#define CUDA_MUL_BLOCK_SIZE 256
+#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
+#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
+
+static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= kx) {
+ return;
+ }
+ dst[i] = x[i] * y[i%ky];
+}
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q4_0 * x = (const block_q4_0 *) vx;
v1 = __half2float(x[ib + 1]);
}
-static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
- static const int qk = QK4_0;
-
- const block_q4_0 * x = (const block_q4_0 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
-
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0xf) - 8;
- const int x1 = (x[i].qs[j] >> 4) - 8;
-
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
-}
-
-static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
- static const int qk = QK4_1;
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
+static __global__ void dequantize_block(const void * vx, float * y, const int k) {
+ const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- const block_q4_1 * x = (const block_q4_1 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
- const float m = x[i].m;
-
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0xf);
- const int x1 = (x[i].qs[j] >> 4);
-
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
+ if (i >= k) {
+ return;
}
-}
-
-static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
- static const int qk = QK5_0;
-
- const block_q5_0 * x = (const block_q5_0 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
-
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
-
- const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
-
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
-}
-
-static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
- static const int qk = QK5_1;
-
- const block_q5_1 * x = (const block_q5_1 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
- const float m = x[i].m;
-
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
-
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
-
- const int x0 = (x[i].qs[j] & 0xf) | xh_0;
- const int x1 = (x[i].qs[j] >> 4) | xh_1;
-
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
- }
-}
-
-static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
- static const int qk = QK8_0;
-
- const block_q8_0 * x = (const block_q8_0 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
+ const int ib = i/qk; // block index
+ const int iqs = (i%qk)/qr; // quant index
+ const int iybs = i - i%qk; // y block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
- for (int j = 0; j < qk; ++j) {
- y[i*qk + j] = x[i].qs[j]*d;
- }
+ // dequantize
+ float & v0 = y[iybs + iqs + 0];
+ float & v1 = y[iybs + iqs + y_offset];
+ dequantize_kernel(vx, ib, iqs, v0, v1);
}
template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel>
}
}
-static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK4_0;
- dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
+static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
+ const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
+ mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
+}
+
+static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
-static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK4_1;
- dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
+static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
-static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK5_0;
- dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
+static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
-static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK5_1;
- dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
+static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
-static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK8_0;
- dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
+static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
-// TODO: optimize
-static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
- const half * x = (const half *) vx;
-
- const int i = blockIdx.x;
-
- y[i] = __half2float(x[i]);
-}
-
-static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
- convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
+static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
}
}
+static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[2];
+ const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+ size_t x_size, d_size;
+
+ float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
+ float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
+ float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const int i0 = i03*ne02 + i02;
+ float * c_X2 = d_X + i0*ne01*ne00;
+ float * c_D2 = d_D + i0*ne01*ne00;
+
+ cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
+ cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
+ cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
+
+ // copy src0 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
+ CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
+
+ // wait for data
+ CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
+
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const int64_t i13 = i03%ne13;
+ const int64_t i12 = i02%ne12;
+ const int64_t i11 = i01%ne11;
+ const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
+
+ float * c_X1 = c_X2 + i01*ne00;
+ float * c_Y = d_Y + i1*ne10;
+ float * c_D1 = c_D2 + i01*ne00;
+
+ // compute
+ mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
+ CUDA_CHECK(cudaGetLastError());
+ }
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_D, d_size);
+}
+
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
ggml_cuda_pool_free(d_Q, q_size);
}
+void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+ ggml_cuda_mul_f32(src0, src1, dst);
+}
+
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
size_t q_size;
- char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
+ char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
cudaStream_t cudaStream2 = g_cudaStreams2[0];
// copy tensor to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2));
- CUDA_CHECK(cudaDeviceSynchronize());
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+ int i = i3*ne2 + i2;
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
+ }
+ }
- tensor->data = d_Q;
+ tensor->data = dst;
tensor->backend = GGML_BACKEND_CUDA;
}
+
+void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
+ FILE * fp = fopen(fname, "rb");
+
+ const size_t size = ggml_nbytes(tensor);
+
+ void * buf;
+ CUDA_CHECK(cudaMalloc(&buf, size));
+ void * buf_host = malloc(size);
+
+#ifdef _WIN32
+ int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
+#else
+ int ret = fseek(fp, (long) offset, SEEK_SET);
+#endif
+ GGML_ASSERT(ret == 0); // same
+
+ size_t ret2 = fread(buf_host, size, 1, fp);
+ if (ret2 != 1) {
+ fprintf(stderr, "unexpectedly reached end of file");
+ exit(1);
+ }
+
+ cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
+ cudaDeviceSynchronize();
+
+ tensor->data = buf;
+ free(buf_host);
+ fclose(fp);
+}
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}
-#if __AVX2__ || __AVX512F__
+#if defined(__AVX2__) || defined(__AVX512F__)
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
return _mm256_cvtepi32_ps(summed_pairs);
}
-// multiply int8_t, add results pairwise twice and return as float vector
-static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
- // Get absolute values of x vectors
- const __m256i ax = _mm256_sign_epi8(x, x);
- // Sign the values of the y vectors
- const __m256i sy = _mm256_sign_epi8(y, x);
+static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
#if __AVXVNNI__
const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
#endif
}
+// multiply int8_t, add results pairwise twice and return as float vector
+static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
+#if __AVXVNNIINT8__
+ const __m256i zero = _mm256_setzero_si256();
+ const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
+ return _mm256_cvtepi32_ps(summed_pairs);
+#else
+ // Get absolute values of x vectors
+ const __m256i ax = _mm256_sign_epi8(x, x);
+ // Sign the values of the y vectors
+ const __m256i sy = _mm256_sign_epi8(y, x);
+ return mul_sum_us8_pairs_float(ax, sy);
+#endif
+}
+
static inline __m128i packNibbles( __m256i bytes )
{
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
return _mm256_cvtepi32_ps(summed_pairs);
}
+static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
+ const __m128i axl = _mm256_castsi256_si128(ax);
+ const __m128i axh = _mm256_extractf128_si256(ax, 1);
+ const __m128i syl = _mm256_castsi256_si128(sy);
+ const __m128i syh = _mm256_extractf128_si256(sy, 1);
+ // Perform multiplication and create 16-bit values
+ const __m128i dotl = _mm_maddubs_epi16(axl, syl);
+ const __m128i doth = _mm_maddubs_epi16(axh, syh);
+ return sum_i16_pairs_float(doth, dotl);
+}
+
// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
const __m128i xl = _mm256_castsi256_si128(x);
#endif // __AVX__ || __AVX2__ || __AVX512F__
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
-#if __ARM_NEON
+#if defined(__ARM_NEON)
#if !defined(__aarch64__)
#define QK4_0 32
typedef struct {
- float d; // delta
+ ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
-static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
+static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
- float d; // delta
- float m; // min
+ ggml_fp16_t d; // delta
+ ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
-static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
+static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
#define QK8_0 32
typedef struct {
- float d; // delta
- int8_t qs[QK8_0]; // quants
+ ggml_fp16_t d; // delta
+ int8_t qs[QK8_0]; // quants
} block_q8_0;
-static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
+static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
- float d; // delta
- float s; // d * sum(qs[i])
- int8_t qs[QK8_1]; // quants
+ float d; // delta
+ float s; // d * sum(qs[i])
+ int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
+ y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < qk/2; ++j) {
const float x0 = x[i*qk + 0 + j]*id;
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- y[i].m = min;
+ y[i].d = GGML_FP32_TO_FP16(d);
+ y[i].m = GGML_FP32_TO_FP16(min);
for (int j = 0; j < qk/2; ++j) {
const float x0 = (x[i*qk + 0 + j] - min)*id;
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
+ y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < QK8_0; ++j) {
const float x0 = x[i*QK8_0 + j]*id;
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
+ y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vmulq_n_f32(srcv[j], id);
// Quantize these floats
const float d = maxScalar / 127.f;
- y[i].d = d;
+ y[i].d = GGML_FP32_TO_FP16(d);
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
sum += y[i].qs[QK8_1/2 + j];
}
- y[i].s = d * sum;
+ y[i].s = sum*d;
}
}
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
- const float d = x[i].d;
+ const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F) - 8;
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
- const float d = x[i].d;
- const float m = x[i].m;
+ const float d = GGML_FP16_TO_FP32(x[i].d);
+ const float m = GGML_FP16_TO_FP32(x[i].m);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F);
const block_q8_0 * restrict x = vx;
for (int i = 0; i < nb; i++) {
- const float d = x[i].d;
+ const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < qk; ++j) {
y[i*qk + j] = x[i].qs[j]*d;
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
- for (int i = 0; i < 8; i++)
+ for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
+ }
return _mm256_loadu_ps(tmp);
}
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- const int8x16_t s8b = vdupq_n_s8(0x8);
+ const uint8x16_t m4b = vdupq_n_u8(0x0F);
+ const int8x16_t s8b = vdupq_n_s8(0x8);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
// Main loop
for (int i = 0; i < nb; ++i) {
/* Compute combined scale for the block */
- const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
+ const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
__m256i bx = bytes_from_nibbles_32(x[i].qs);
// Main loop
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
- const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
+ const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
const __m128i lowMask = _mm_set1_epi8(0xF);
const __m128i off = _mm_set1_epi8(8);
_mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
+ const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
_mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
+ const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
_mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
+ const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
+ const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
}
- sumf += (x[i].d*y[i].d)*sumi;
+ sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
}
*s = sumf;
const block_q8_1 * restrict y0 = &y[i + 0];
const block_q8_1 * restrict y1 = &y[i + 1];
- summs += x0->m * y0->s + x1->m * y1->s;
+ summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
const uint8x16_t m4b = vdupq_n_u8(0x0F);
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
#endif
}
// Main loop
for (int i = 0; i < nb; ++i) {
- const float * d0 = &x[i].d;
- const float * d1 = &y[i].d;
+ const float d0 = GGML_FP16_TO_FP32(x[i].d);
+ const float d1 = y[i].d;
- summs += x[i].m * y[i].s;
+ summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- const __m256 d0v = _mm256_broadcast_ss( d0 );
- const __m256 d1v = _mm256_broadcast_ss( d1 );
+ const __m256 d0v = _mm256_set1_ps( d0 );
+ const __m256 d1v = _mm256_set1_ps( d1 );
// Compute combined scales
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
const __m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
- const __m256 xy = mul_sum_i8_pairs_float(bx, by);
+ const __m256 xy = mul_sum_us8_pairs_float(bx, by);
// Accumulate d0*d1*x*y
#if defined(__AVX2__)
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
}
- sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
+ sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
}
*s = sumf;
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- const float x0d = GGML_FP16_TO_FP32(x0->d);
- const float x1d = GGML_FP16_TO_FP32(x1->d);
-
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
+ vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
+ vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
// Main loop
for (int i = 0; i < nb; i++) {
/* Compute combined scale for the block */
- const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
+ const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i bxhi = bytes_from_bits_32(x[i].qh);
// Main loop
for (int i = 0; i < nb; i++) {
/* Compute combined scale for the block */
- const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
+ const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
}
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
+ sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
}
*s = sumf;
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- const float x0d = GGML_FP16_TO_FP32(x0->d);
- const float x1d = GGML_FP16_TO_FP32(x1->d);
-
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
+ vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
+ vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
#endif
}
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
- const float x0d = GGML_FP16_TO_FP32(x0->d);
-
// dot product
- sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
- wasm_i32x4_add(
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
- wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
- wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
+ sumv = wasm_f32x4_add(sumv,
+ wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
+ wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
+ wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
+ wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
+ wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
+ wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d));
}
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
bx = _mm256_or_si256(bx, bxhi);
- const __m256 dy = _mm256_broadcast_ss(&y[i].d);
+ const __m256 dy = _mm256_set1_ps(y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
+ const __m256 q = mul_sum_us8_pairs_float(bx, by);
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
}
bxh = _mm_or_si128(bxh, bxhih);
bx = _mm256_set_m128i(bxh, bxl);
- const __m256 dy = _mm256_broadcast_ss(&y[i].d);
+ const __m256 dy = _mm256_set1_ps(y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
+ const __m256 q = mul_sum_us8_pairs_float(bx, by);
acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
}
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
- vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
+ vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
- vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
+ vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
+ sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
+ sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
// Main loop
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
- const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
+ const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
sumi += x[i].qs[j]*y[i].qs[j];
}
- sumf += (x[i].d*y[i].d)*sumi;
+ sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
}
*s = sumf;
"ROPE",
"ROPE_BACK",
"ALIBI",
+ "CLAMP",
"CONV_1D_1S",
"CONV_1D_2S",
"MAP_BINARY",
};
-static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
+static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
+
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"rope(x)",
"rope_back(x)",
"alibi(x)",
+ "clamp(x)",
"conv_1d_1s(x)",
"conv_1d_2s(x)",
"f(x,y)",
};
-static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
+static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
(t1->ne[3]%t0->ne[3] == 0);
}
+static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
+}
+
static inline int ggml_up32(int n) {
return (n + 31) & ~31;
}
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
+ // TODO: support less-strict constraint
+ // GGML_ASSERT(ggml_can_repeat(b, a));
+ GGML_ASSERT(ggml_can_repeat_rows(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
+ // TODO: support backward pass for broadcasting
+ GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
- int n_head) {
+ int n_head,
+ float bias_max) {
GGML_ASSERT(n_past >= 0);
bool is_node = false;
((int32_t *) b->data)[0] = n_past;
((int32_t *) b->data)[1] = n_head;
+ GGML_ASSERT(sizeof(float) == sizeof(int32_t));
+ (((float *) b->data)[2]) = bias_max;
ggml_scratch_load(ctx);
return result;
}
+// ggml_clamp
+
+struct ggml_tensor * ggml_clamp(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float min,
+ float max) {
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ ggml_scratch_save(ctx);
+
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
+
+ ((float *) b->data)[0] = min;
+ ((float *) b->data)[1] = max;
+
+ ggml_scratch_load(ctx);
+
+ result->op = GGML_OP_CLAMP;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
// ggml_conv_1d_1s
struct ggml_tensor * ggml_conv_1d_1s(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
const int ith = params->ith;
const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
+#ifdef GGML_USE_CUBLAS
+ if (src1->backend == GGML_BACKEND_CUDA) {
+ if (ith == 0) {
+ ggml_cuda_mul(src0, src1, dst);
+ }
+ return;
+ }
+#endif
+
+ const int64_t nr = ggml_nrows(src0);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(ne00 == ne10);
if (nb10 == sizeof(float)) {
- for (int ir = ith; ir < nr; ir += nth) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_mul_f32);
- vDSP_vmul(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
+ vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
#else
- ggml_vec_mul_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+ ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
#endif
// }
// }
}
} else {
// src1 is not contiguous
- for (int ir = ith; ir < nr; ir += nth) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+
+ for (int64_t i0 = 0; i0 < ne00; i0++) {
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
}
assert(src1->type == GGML_TYPE_I32);
assert(ggml_nelements(src1) == 2);
+ const int ith = params->ith;
+ const int nth = params->nth;
+
const int n_past = ((int32_t *) src1->data)[0];
const bool inplace = (bool)((int32_t *) src1->data)[1];
- if (params->type == GGML_TASK_INIT) {
- // TODO: this hack is not good, need a better way to handle this
- if (!inplace) {
- // use the init task to copy src -> dst
- struct ggml_compute_params params_cpy = *params;
-
- params_cpy.ith = 0;
- params_cpy.nth = 1;
- params_cpy.type = GGML_TASK_COMPUTE;
-
- ggml_compute_forward_dup_same_cont(¶ms_cpy, src0, dst);
- }
+ assert(n_past >= 0);
- return;
+ if (!inplace && (params->type == GGML_TASK_INIT)) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
}
- if (params->type == GGML_TASK_FINALIZE) {
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
- const int ith = params->ith;
- const int nth = params->nth;
-
- assert(n_past >= 0);
-
// TODO: handle transposed/permuted matrices
const int n = ggml_nrows(src0);
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
+ assert(ggml_nelements(src1) == 3);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_head = ((int32_t *) src1->data)[1];
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_head = ((int32_t *) src1->data)[1];
+ const float max_bias = ((float *) src1->data)[2];
assert(n_past >= 0);
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
- const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
- pdst[0] = i * m_k + src[0];
+ pdst[0] = (i-ne0+1) * m_k + src[0];
+
}
}
}
}
-
static void ggml_compute_forward_alibi_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
+ assert(ggml_nelements(src1) == 3);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_head = ((int32_t *) src1->data)[1];
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_head = ((int32_t *) src1->data)[1];
+ const float max_bias = ((float *) src1->data)[2];
assert(n_past >= 0);
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
- const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
}
// we return F32
- pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
+ pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
}
}
}
}
}
+
+// ggml_compute_forward_clamp
+
+static void ggml_compute_forward_clamp_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 2);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int min = ((float *) src1->data)[0];
+ const int max = ((float *) src1->data)[1];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ for (int j = ith; j < n; j += nth) {
+ float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
+ float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
+
+ for (int i = 0; i < nc; i++) {
+ dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
+ }
+ }
+}
+
+static void ggml_compute_forward_clamp(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_clamp_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_rope
static void ggml_compute_forward_rope_f32(
{
ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
} break;
+ case GGML_OP_CLAMP:
+ {
+ ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
+ } break;
case GGML_OP_CONV_1D_1S:
{
ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
{
GGML_ASSERT(false); // TODO: not implemented
} break;
+ case GGML_OP_CLAMP:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
case GGML_OP_SILU:
{
// necessary for llama
{
node->n_tasks = 1; //TODO
} break;
+ case GGML_OP_CLAMP:
+ {
+ node->n_tasks = 1; //TODO
+ } break;
case GGML_OP_CONV_1D_1S:
case GGML_OP_CONV_1D_2S:
{