models/*
models-mnt
-/main
-/quantize
-/quantize-stats
-/result
-/perplexity
-/embedding
-/train-text-from-scratch
-/convert-llama2c-to-ggml
-/simple
-/benchmark-matmult
-/vdot
-/server
/Pipfile
+/baby-llama
+/beam-search
+/benchmark-matmult
+/convert-llama2c-to-ggml
/embd-input-test
+/embedding
/gguf
/gguf-llama-simple
/libllama.so
/llama-bench
-/baby-llama
-/beam-search
+/main
+/metal
+/perplexity
+/quantize
+/quantize-stats
+/result
/save-load-state
+/server
+/simple
/speculative
+/train-text-from-scratch
+/vdot
build-info.h
arm_neon.h
compile_commands.json
# Option list
#
+if (APPLE)
+ set(LLAMA_METAL_DEFAULT ON)
+else()
+ set(LLAMA_METAL_DEFAULT OFF)
+endif()
+
# general
option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
-option(LLAMA_METAL "llama: use Metal" OFF)
+option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
endif()
endif()
+if (LLAMA_METAL)
+ find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
+ find_library(METAL_FRAMEWORK Metal REQUIRED)
+ find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
+
+ message(STATUS "Metal framework found")
+
+ set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
+
+ add_compile_definitions(GGML_USE_METAL)
+ #add_compile_definitions(GGML_METAL_NDEBUG)
+
+ # get full path to the file
+ #add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
+
+ # copy ggml-metal.metal to bin directory
+ configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
+
+ set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
+ ${FOUNDATION_LIBRARY}
+ ${METAL_FRAMEWORK}
+ ${METALKIT_FRAMEWORK}
+ )
+endif()
+
if (LLAMA_BLAS)
if (LLAMA_STATIC)
set(BLA_STATIC ON)
endif()
endif()
-if (LLAMA_METAL)
- find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
- find_library(METAL_FRAMEWORK Metal REQUIRED)
- find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
-
- set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
-
- add_compile_definitions(GGML_USE_METAL)
- #add_compile_definitions(GGML_METAL_NDEBUG)
-
- # get full path to the file
- #add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
-
- # copy ggml-metal.metal to bin directory
- configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
-
- set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
- ${FOUNDATION_LIBRARY}
- ${METAL_FRAMEWORK}
- ${METALKIT_FRAMEWORK}
- )
-endif()
-
if (LLAMA_MPI)
cmake_minimum_required(VERSION 3.10)
find_package(MPI)
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
+ifndef UNAME_S
+UNAME_S := $(shell uname -s)
+endif
+
+ifndef UNAME_P
+UNAME_P := $(shell uname -p)
+endif
+
+ifndef UNAME_M
+UNAME_M := $(shell uname -m)
+endif
+
+# Mac OS + Arm can report x86_64
+# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
+ifeq ($(UNAME_S),Darwin)
+ ifndef LLAMA_NO_METAL
+ LLAMA_METAL := 1
+ endif
+
+ ifneq ($(UNAME_P),arm)
+ SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
+ ifeq ($(SYSCTL_M),1)
+ # UNAME_P := arm
+ # UNAME_M := arm64
+ warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
+ endif
+ endif
+endif
+
+ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
+BUILD_TARGETS += metal
+endif
+
default: $(BUILD_TARGETS)
test:
mkdir -p gcovr-report
gcovr --root . --html --html-details --output gcovr-report/coverage.html
-ifndef UNAME_S
-UNAME_S := $(shell uname -s)
-endif
-
-ifndef UNAME_P
-UNAME_P := $(shell uname -p)
-endif
-
-ifndef UNAME_M
-UNAME_M := $(shell uname -m)
-endif
-
ifdef RISCV_CROSS_COMPILE
CC := riscv64-unknown-linux-gnu-gcc
CXX := riscv64-unknown-linux-gnu-g++
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
-# Mac OS + Arm can report x86_64
-# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
-ifeq ($(UNAME_S),Darwin)
- ifneq ($(UNAME_P),arm)
- SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
- ifeq ($(SYSCTL_M),1)
- # UNAME_P := arm
- # UNAME_M := arm64
- warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
- endif
- endif
-endif
-
#
# Compile flags
#
endif
ifndef LLAMA_NO_ACCELERATE
- # Mac M1 - include Accelerate framework.
- # `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
+ # Mac OS - include Accelerate framework.
+ # `-framework Accelerate` works both with Apple Silicon and Mac Intel
ifeq ($(UNAME_S),Darwin)
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
MK_LDFLAGS += -framework Accelerate
endif
endif # LLAMA_NO_ACCELERATE
+ifdef LLAMA_METAL
+ # By default - use GPU acceleration on Mac OS
+ ifeq ($(UNAME_S),Darwin)
+ CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
+ CXXFLAGS += -DGGML_USE_METAL
+ LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
+ OBJS += ggml-metal.o
+ endif
+endif # LLAMA_METAL
+
ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
-BUILD_TARGETS += metal
-endif
-
ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
### Metal Build
-Using Metal allows the computation to be executed on the GPU for Apple devices:
+On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
+To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
-- Using `make`:
-
- ```bash
- LLAMA_METAL=1 make
- ```
-
-- Using `CMake`:
-
- ```bash
- mkdir build-metal
- cd build-metal
- cmake -DLLAMA_METAL=ON ..
- cmake --build . --config Release
- ```
-
-When built with Metal support, you can enable GPU inference with the `--gpu-layers|-ngl` command-line argument.
-Any value larger than 0 will offload the computation to the GPU. For example:
-
-```bash
-./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
-```
+When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
+argument.
### MPI Build
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
- lparams.n_gpu_layers = params.n_gpu_layers;
+ if (params.n_gpu_layers != -1) {
+ lparams.n_gpu_layers = params.n_gpu_layers;
+ }
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;
lparams.low_vram = params.low_vram;
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
- fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers);
+ fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
- int32_t n_gpu_layers = 0; // number of layers to store in VRAM
+ int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
}
- if (params.n_ctx > 2048) {
- // TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
- LOG_TEE("%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
- } else if (params.n_ctx < 8) {
- LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
- params.n_ctx = 8;
- }
-
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) {
return 1;
}
+ if (params.n_ctx > llama_n_ctx(ctx)) {
+ LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
+ } else if (params.n_ctx < 8) {
+ LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
+ params.n_ctx = 8;
+ }
+
// print system information
{
LOG_TEE("\n");
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
- const int first = std::min(512, params.n_ctx/2);
+ const int first = params.n_ctx/2;
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
count += params.n_ctx - first - 1;
params.n_ctx += params.ppl_stride/2;
}
- if (params.n_ctx > 2048) {
- fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
- "expect poor results\n", __func__, params.n_ctx);
- }
-
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) {
return 1;
}
+ if (params.n_ctx > llama_n_ctx(ctx)) {
+ fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
+ "expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
+ }
+
// print system information
{
fprintf(stderr, "\n");
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
- /*.gpu_layers =*/ 0,
+ /*.n_gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f,
/*.embedding =*/ false,
};
+#ifdef GGML_USE_METAL
+ result.n_gpu_layers = 1;
+#endif
+
return result;
}
}
#endif
}
- }
#ifdef GGML_USE_METAL
- if (params.n_gpu_layers > 0) {
- // this allocates all Metal resources and memory buffers
+ if (params.n_gpu_layers > 0) {
+ // this allocates all Metal resources and memory buffers
- void * data_ptr = NULL;
- size_t data_size = 0;
+ void * data_ptr = NULL;
+ size_t data_size = 0;
- if (params.use_mmap) {
- data_ptr = ctx->model.mapping->addr;
- data_size = ctx->model.mapping->size;
- } else {
- data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
- data_size = ggml_get_mem_size (ctx->model.ctx);
- }
+ if (params.use_mmap) {
+ data_ptr = ctx->model.mapping->addr;
+ data_size = ctx->model.mapping->size;
+ } else {
+ data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
+ data_size = ggml_get_mem_size (ctx->model.ctx);
+ }
- const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
+ const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
- LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
+ LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
- if (!(result)) { \
- LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
- llama_free(ctx); \
- return NULL; \
- }
+ if (!(result)) { \
+ LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
+ llama_free(ctx); \
+ return NULL; \
+ }
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
+ LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
#undef LLAMA_METAL_CHECK_BUF
- }
+ }
#endif
+ }
#ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init();