- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
+- [x] [LFM2-VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)
</details>
{ LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
}
},
{
} break;
case LLM_ARCH_LFM2:
{
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+
+ if (output == NULL) {
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+ }
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
cb(cur, "model.embedding_norm", -1);
res->t_embd = cur;
- // lm_head is tied with embeddings
- cur = build_lora_mm(model.tok_embd, cur);
+ cur = build_lora_mm(model.output, cur);
cb(cur, "lm_head", -1);
res->t_logits = cur;
const int height = img->ny;
const int total_factor = params.patch_size * params.proj_scale_factor;
constexpr int min_image_tokens = 64;
- constexpr int max_image_tokens = 256;
+ constexpr int max_image_tokens = 1024;
const float min_pixels = min_image_tokens * total_factor * total_factor;
const float max_pixels = max_image_tokens * total_factor * total_factor;