]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add support for BitnetForCausalLM (#7931)
authorEddie-Wang <redacted>
Sun, 23 Jun 2024 18:27:57 +0000 (02:27 +0800)
committerGitHub <redacted>
Sun, 23 Jun 2024 18:27:57 +0000 (21:27 +0300)
* hf bitnet v1

* hf bitnet e2e v2

* finish bitnet e2e

* finish f16 hf bitnet e2e

* remove unsed

* finish bitnet i2 e2e

* move i2s to quantize v1

* move i2 to quantize

* clean code

* clean code 2

* fix codestyle

* fix code

* fix

* fix code

* fix merge

* remove unused

* change table name

* fix whitespace

* delete redundant

* i2_s to absmax

* finish i2_s/i8_s vec_dot x86 simd

* i2s->q22

* fix code

* remove block scale

* add dequantize

* fix seq

* update avx2

* remove q2_2

* remove q22_grid

* fix whitespace

* reuse llm_build_kv

* fix bo

---------

Co-authored-by: root <redacted>
convert-hf-to-gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
llama.cpp

index 3107b69f7e42ead1a37b2d943b06b351eac115c8..8ce79d14604fdc767580ff00342a8d19736e969d 100755 (executable)
@@ -1404,6 +1404,48 @@ class LlamaModel(Model):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@Model.register("BitnetForCausalLM")
+class BitnetModel(Model):
+    model_arch = gguf.MODEL_ARCH.BITNET
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+        self.gguf_writer.add_rope_scaling_factor(1.0)
+
+    def weight_quant(self, weight):
+        dtype = weight.dtype
+        weight = weight.float()
+        s = 1 / weight.abs().mean().clamp(min=1e-5)
+        weight = (weight * s).round().clamp(-1, 1) / s
+        scale = weight.abs().max().unsqueeze(0)
+        weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
+        weight = torch.sign(weight).type(dtype)
+        return weight.type(dtype), scale.type(torch.float32)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        new_name = self.map_tensor_name(name)
+
+        if any(self.match_model_tensor_name(new_name, key, bid) for key in [
+            gguf.MODEL_TENSOR.ATTN_Q,
+            gguf.MODEL_TENSOR.ATTN_K,
+            gguf.MODEL_TENSOR.ATTN_V,
+            gguf.MODEL_TENSOR.ATTN_OUT,
+            gguf.MODEL_TENSOR.FFN_UP,
+            gguf.MODEL_TENSOR.FFN_DOWN,
+            gguf.MODEL_TENSOR.FFN_GATE,
+        ]):
+            # transform weight into 1/0/-1 (in fp32)
+            weight_torch, scale_torch = self.weight_quant(data_torch)
+            yield (new_name, weight_torch)
+            yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
+        else:
+            yield (new_name, data_torch)
+
+
 @Model.register("GrokForCausalLM")
 class GrokModel(Model):
     model_arch = gguf.MODEL_ARCH.GROK
index fb20cfabbcab52c8c6eeb7f05b16f108874f6c45..d266fbd43d8d66333cd2dccad2f7bd4771d47800 100644 (file)
@@ -149,6 +149,7 @@ class MODEL_ARCH(IntEnum):
     OLMO       = auto()
     ARCTIC     = auto()
     DEEPSEEK2  = auto()
+    BITNET     = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -200,6 +201,8 @@ class MODEL_TENSOR(IntEnum):
     ATTN_KV_B          = auto()
     ATTN_Q_A_NORM      = auto()
     ATTN_KV_A_NORM     = auto()
+    FFN_SUB_NORM       = auto()
+    ATTN_SUB_NORM      = auto()
 
 
 MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@@ -237,6 +240,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.OLMO:           "olmo",
     MODEL_ARCH.ARCTIC:         "arctic",
     MODEL_ARCH.DEEPSEEK2:      "deepseek2",
+    MODEL_ARCH.BITNET:         "bitnet",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -288,6 +292,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
     MODEL_TENSOR.ATTN_KV_B:          "blk.{bid}.attn_kv_b",
     MODEL_TENSOR.ATTN_Q_A_NORM:      "blk.{bid}.attn_q_a_norm",
     MODEL_TENSOR.ATTN_KV_A_NORM:     "blk.{bid}.attn_kv_a_norm",
+    MODEL_TENSOR.ATTN_SUB_NORM:      "blk.{bid}.attn_sub_norm",
+    MODEL_TENSOR.FFN_SUB_NORM:       "blk.{bid}.ffn_sub_norm",
 }
 
 MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@@ -808,6 +814,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_SHEXP,
         MODEL_TENSOR.FFN_UP_SHEXP,
     ],
+    MODEL_ARCH.BITNET: [
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.ATTN_SUB_NORM,
+        MODEL_TENSOR.FFN_SUB_NORM,
+    ],
     # TODO
 }
 
index 81b4992a51eed0fb817ce870556a1e9c564221da..350035bd96a17ea7a2ac59d6f668102fd7878dda 100644 (file)
@@ -413,6 +413,14 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_KV_A_NORM: (
             "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
         ),
+
+        MODEL_TENSOR.ATTN_SUB_NORM: (
+            "model.layers.{bid}.self_attn.inner_attn_ln",  # bitnet
+        ),
+
+        MODEL_TENSOR.FFN_SUB_NORM: (
+            "model.layers.{bid}.mlp.ffn_layernorm",  # bitnet
+        ),
     }
 
     # architecture-specific block mappings
index a05a52b4234cd0a6afd48a654c37de3497d92d9d..c710ef82b746e0c749df67de33e8a0816f9c08a8 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -225,6 +225,7 @@ enum llm_arch {
     LLM_ARCH_OLMO,
     LLM_ARCH_ARCTIC,
     LLM_ARCH_DEEPSEEK2,
+    LLM_ARCH_BITNET,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -263,6 +264,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_OLMO,            "olmo"         },
     { LLM_ARCH_ARCTIC,          "arctic"       },
     { LLM_ARCH_DEEPSEEK2,       "deepseek2"    },
+    { LLM_ARCH_BITNET,          "bitnet"       },
     { LLM_ARCH_UNKNOWN,         "(unknown)"    },
 };
 
@@ -500,6 +502,8 @@ enum llm_tensor {
     LLM_TENSOR_ATTN_KV_B,
     LLM_TENSOR_ATTN_Q_A_NORM,
     LLM_TENSOR_ATTN_KV_A_NORM,
+    LLM_TENSOR_ATTN_SUB_NORM,
+    LLM_TENSOR_FFN_SUB_NORM,
 };
 
 static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@@ -1113,6 +1117,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
         },
     },
+    {
+        LLM_ARCH_BITNET,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_SUB_NORM,      "blk.%d.attn_sub_norm" },
+            { LLM_TENSOR_FFN_GATE,           "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,           "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_SUB_NORM,       "blk.%d.ffn_sub_norm" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -2118,6 +2140,8 @@ struct llama_layer {
     struct ggml_tensor * attn_out_norm_b;
     struct ggml_tensor * attn_q_a_norm;
     struct ggml_tensor * attn_kv_a_norm;
+    struct ggml_tensor * attn_sub_norm;
+    struct ggml_tensor * ffn_sub_norm;
 
     // attention
     struct ggml_tensor * wq;
@@ -2185,6 +2209,15 @@ struct llama_layer {
     // long rope factors
     struct ggml_tensor * rope_long  = nullptr;
     struct ggml_tensor * rope_short = nullptr;
+
+    // bitnet scale
+    struct ggml_tensor * wq_scale;
+    struct ggml_tensor * wk_scale;
+    struct ggml_tensor * wv_scale;
+    struct ggml_tensor * wo_scale;
+    struct ggml_tensor * ffn_gate_scale;
+    struct ggml_tensor * ffn_up_scale;
+    struct ggml_tensor * ffn_down_scale;
 };
 
 struct llama_kv_cell {
@@ -4710,6 +4743,15 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_BITNET:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 26: model.type = e_model::MODEL_3B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     }
 
@@ -6655,6 +6697,44 @@ static bool llm_load_tensors(
                         }
                     }
                 } break;
+            case LLM_ARCH_BITNET:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+                        layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+                        layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+                        layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -7295,7 +7375,10 @@ static struct ggml_tensor * llm_build_kqv(
 
     ggml_build_forward_expand(graph, cur);
 
-    cur = ggml_mul_mat(ctx, wo, cur);
+    if (wo) {
+        cur = ggml_mul_mat(ctx, wo, cur);
+    }
+
     if (wo_b) {
         cb(cur, "kqv_wo", il);
     }
@@ -11709,6 +11792,153 @@ struct llm_build_context {
         return gf;
     }
 
+    struct ggml_cgraph * build_bitnet() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                // B1.K
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                // B1.V
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+                        nullptr, nullptr,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].attn_sub_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_sub_norm", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
+                cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
+                if (model.layers[il].bo) {
+                    cur = ggml_add(ctx0, cur, model.layers[il].bo);
+                }
+                cb(cur, "attn_o_out", il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward forward
+            if (model.layers[il].ffn_gate_inp == nullptr) {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
+                tmp = ggml_mul(ctx0, tmp, model.layers[il].ffn_up_scale);
+                cb(tmp, "ffn_up", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
+                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_gate_scale);
+                cb(cur, "ffn_gate", il);
+
+                cur = ggml_silu(ctx0, cur);
+                cb(cur, "ffn_silu", il);
+
+                cur = ggml_mul(ctx0, cur, tmp);
+                cb(cur, "ffn_gate_par", il);
+
+                cur = llm_build_norm(ctx0, cur, hparams,
+                                model.layers[il].ffn_sub_norm, NULL,
+                                LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_sub_norm", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
+                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
+                cb(cur, "ffn_down", il);
+            }
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+        return gf;
+    }
+
 };
 
 static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -11932,6 +12162,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_deepseek2();
             } break;
+        case LLM_ARCH_BITNET:
+            {
+                result = llm.build_bitnet();
+            } break;
         default:
             GGML_ASSERT(false);
     }
@@ -16760,6 +16994,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_BERT:
         case LLM_ARCH_NOMIC_BERT:
         case LLM_ARCH_STABLELM:
+        case LLM_ARCH_BITNET:
         case LLM_ARCH_QWEN:
         case LLM_ARCH_QWEN2:
         case LLM_ARCH_QWEN2MOE: