]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model : add EXAONE 4.0 support (#14630)
authorlgai-exaone <redacted>
Fri, 18 Jul 2025 08:45:49 +0000 (17:45 +0900)
committerGitHub <redacted>
Fri, 18 Jul 2025 08:45:49 +0000 (10:45 +0200)
convert_hf_to_gguf.py
convert_hf_to_gguf_update.py
gguf-py/gguf/constants.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-chat.cpp
src/llama-chat.h
src/llama-model.cpp
src/llama-vocab.cpp

index d9185c80600283b28ba8ea2f6a1426cc581e78e7..c8bf3c5383089d27d50ad63d531c527f8ade95db 100755 (executable)
@@ -843,6 +843,9 @@ class TextModel(ModelBase):
         if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
             # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
             res = "lfm2"
+        if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
+            # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
+            res = "exaone4"
 
         if res is None:
             logger.warning("\n")
@@ -6780,6 +6783,75 @@ class ExaoneModel(TextModel):
                 yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
 
 
+@ModelBase.register("Exaone4ForCausalLM")
+class Exaone4Model(TextModel):
+    model_arch = gguf.MODEL_ARCH.EXAONE4
+
+    def set_vocab(self):
+        tokens, toktypes, tokpre = self.get_vocab_base()
+        self.gguf_writer.add_tokenizer_model("gpt2")
+        self.gguf_writer.add_tokenizer_pre(tokpre)
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        if hparams.get("sliding_window") is not None:
+            self.gguf_writer.add_sliding_window(hparams["sliding_window"])
+            if "layer_types" in hparams:
+                self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
+            elif "sliding_window_pattern" in hparams:
+                sliding_window_pattern = []
+                if isinstance(hparams["sliding_window_pattern"], str):  # e.g. LLLG
+                    for i in range(hparams["num_hidden_layers"]):
+                        sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
+                if isinstance(hparams["sliding_window_pattern"], int):  # e.g. 4
+                    for i in range(hparams["num_hidden_layers"]):
+                        sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
+                if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
+                    self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
+
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+            if rope_scaling.get("rope_type", '').lower() == "llama3":
+                base = self.hparams.get("rope_theta", 10_000.0)
+                if (dim := self.hparams.get("head_dim")) is None:
+                    dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+                freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+                factor = rope_scaling.get("factor", 16.0)
+                low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+                high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+                old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+                low_freq_wavelen = old_context_len / low_freq_factor
+                high_freq_wavelen = old_context_len / high_freq_factor
+
+                rope_factors = []
+                for freq in freqs:
+                    wavelen = 2 * math.pi / freq
+                    if wavelen < high_freq_wavelen:
+                        rope_factors.append(1)
+                    elif wavelen > low_freq_wavelen:
+                        rope_factors.append(factor)
+                    else:
+                        smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+                        rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+                yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+
 @ModelBase.register("GraniteForCausalLM")
 class GraniteModel(LlamaModel):
     """Conversion for IBM's GraniteForCausalLM"""
index f7b6d97b19c8ba85201c1adf73ed76a0c1d922fe..abaf2ea9a1248ff76a73a37c5b697e1febeb8a77 100755 (executable)
@@ -129,6 +129,7 @@ models = [
     {"name": "a.x-4.0",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
     {"name": "midm-2.0",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
     {"name": "lfm2",             "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
+    {"name": "exaone4",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
 ]
 
 # some models are known to be broken upstream, so we will skip them as exceptions
index a8f5947ac33bffe0318011d08d0d3402d809882f..40e809f1ac855d0ece7483a97fd7ed867e8bedb9 100644 (file)
@@ -354,6 +354,7 @@ class MODEL_ARCH(IntEnum):
     JAIS             = auto()
     NEMOTRON         = auto()
     EXAONE           = auto()
+    EXAONE4          = auto()
     GRANITE          = auto()
     GRANITE_MOE      = auto()
     GRANITE_HYBRID   = auto()
@@ -671,6 +672,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.JAIS:             "jais",
     MODEL_ARCH.NEMOTRON:         "nemotron",
     MODEL_ARCH.EXAONE:           "exaone",
+    MODEL_ARCH.EXAONE4:          "exaone4",
     MODEL_ARCH.GRANITE:          "granite",
     MODEL_ARCH.GRANITE_MOE:      "granitemoe",
     MODEL_ARCH.GRANITE_HYBRID:   "granitehybrid",
@@ -2197,6 +2199,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.EXAONE4: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_POST_NORM,
+    ],
     MODEL_ARCH.GRANITE: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index df3fc5d3e74f895a2e2bbbd4501d90d6fc352a34..814ac93a6d87e36bfd77e7fff645cfc2db955a11 100644 (file)
@@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_JAIS,             "jais"             },
     { LLM_ARCH_NEMOTRON,         "nemotron"         },
     { LLM_ARCH_EXAONE,           "exaone"           },
+    { LLM_ARCH_EXAONE4,          "exaone4"          },
     { LLM_ARCH_RWKV6,            "rwkv6"            },
     { LLM_ARCH_RWKV6QWEN2,       "rwkv6qwen2"       },
     { LLM_ARCH_RWKV7,            "rwkv7"            },
@@ -1510,6 +1511,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_EXAONE4,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+        }
+    },
     {
         LLM_ARCH_RWKV6,
         {
index 3bffe359eabe5541f18d9ed2fa77fa7048e15f80..d09b7d7810b03a2cebb5abc463ca9744805fa100 100644 (file)
@@ -72,6 +72,7 @@ enum llm_arch {
     LLM_ARCH_JAIS,
     LLM_ARCH_NEMOTRON,
     LLM_ARCH_EXAONE,
+    LLM_ARCH_EXAONE4,
     LLM_ARCH_RWKV6,
     LLM_ARCH_RWKV6QWEN2,
     LLM_ARCH_RWKV7,
index 240937eceee9df7ba2fd4beb10398a04617b7231..80072ad2713c76386a1153d426a1467e946a4e3f 100644 (file)
@@ -56,6 +56,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "glmedge",           LLM_CHAT_TEMPLATE_GLMEDGE           },
     { "minicpm",           LLM_CHAT_TEMPLATE_MINICPM           },
     { "exaone3",           LLM_CHAT_TEMPLATE_EXAONE_3          },
+    { "exaone4",           LLM_CHAT_TEMPLATE_EXAONE_4          },
     { "rwkv-world",        LLM_CHAT_TEMPLATE_RWKV_WORLD        },
     { "granite",           LLM_CHAT_TEMPLATE_GRANITE           },
     { "gigachat",          LLM_CHAT_TEMPLATE_GIGACHAT          },
@@ -168,6 +169,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
     } else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
         return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
     } else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
+        if (tmpl_contains("[|tool|]")) {
+            return LLM_CHAT_TEMPLATE_EXAONE_4;
+        }
         // ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
         // EXAONE-3.0-7.8B-Instruct
         return LLM_CHAT_TEMPLATE_EXAONE_3;
@@ -532,6 +536,22 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << "[|assistant|]";
         }
+    } else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_4) {
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
+            } else if (role == "user") {
+                ss << "[|user|]" << trim(message->content) << "\n";
+            } else if (role == "assistant") {
+                ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
+            } else if (role == "tool") {
+                ss << "[|tool|]" << trim(message->content) << "[|endofturn|]\n";
+            }
+        }
+        if (add_ass) {
+            ss << "[|assistant|]";
+        }
     } else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
         // this template requires the model to have "\n\n" as EOT token
         for (size_t i = 0; i < chat.size(); i++) {
index cab0533485652f1391ac6b91573688671e4ef151..6968a19fbe13c8de2c2135df1d49ce039ce509eb 100644 (file)
@@ -35,6 +35,7 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_GLMEDGE,
     LLM_CHAT_TEMPLATE_MINICPM,
     LLM_CHAT_TEMPLATE_EXAONE_3,
+    LLM_CHAT_TEMPLATE_EXAONE_4,
     LLM_CHAT_TEMPLATE_RWKV_WORLD,
     LLM_CHAT_TEMPLATE_GRANITE,
     LLM_CHAT_TEMPLATE_GIGACHAT,
index b88f4ebc5c02fd98c294f7a99a5b78973364e72e..cd3e456948cd2c64acfc41352eee00a3b95003bb 100644 (file)
@@ -1490,6 +1490,23 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_EXAONE4:
+            {
+                if (hparams.n_layer == 64) {    // 32B
+                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+                    hparams.n_swa = 4096;
+                    hparams.set_swa_pattern(4);
+                }
+
+                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 30: type = LLM_TYPE_1_2B; break;
+                    case 64: type = LLM_TYPE_32B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_RWKV6:
         case LLM_ARCH_RWKV6QWEN2:
             {
@@ -4355,6 +4372,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up     = create_tensor(tn(LLM_TENSOR_FFN_UP,     "weight", i), {n_embd,   n_ff}, 0);
                     }
                 } break;
+            case LLM_ARCH_EXAONE4:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+
+                        layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
+
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_post_norm  = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+                    }
+                } break;
             case LLM_ARCH_RWKV6:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -13478,6 +13528,142 @@ struct llm_build_exaone : public llm_graph_context {
     }
 };
 
+template <bool iswa>
+struct llm_build_exaone4 : public llm_graph_context {
+    llm_build_exaone4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_k;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
+        inp_attn_type * inp_attn = nullptr;
+
+        if constexpr (iswa) {
+            inp_attn = build_attn_inp_kv_unified_iswa();
+        } else {
+            inp_attn = build_attn_inp_kv_unified();
+        }
+
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // use RoPE for SWA layers or non-SWA models
+            const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
+
+            cur = inpL;
+
+            // self-attention
+            {
+                ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
+
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+                cb(Kcur, "Kcur_normed", il);
+
+                if (use_rope) {
+                    Qcur = ggml_rope_ext(
+                            ctx0, Qcur, inp_pos, rope_factors,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                            );
+
+                    Kcur = ggml_rope_ext(
+                            ctx0, Kcur, inp_pos, rope_factors,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                            );
+                }
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, NULL,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+                cb(cur, "attn_out", il);
+            }
+
+            if (il == n_layer - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            cur = build_norm(cur,
+                    model.layers[il].attn_post_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_post_norm", il);
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = build_ffn(ffn_inp,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+
+            cur = build_norm(cur,
+                    model.layers[il].ffn_post_norm, NULL,
+                    LLM_NORM_RMS, -1);
+            cb(cur, "ffn_post_norm", -1);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_rwkv6_base : public llm_graph_context {
     const llama_model & model;
 
@@ -17163,6 +17349,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_exaone>(*this, params);
             } break;
+        case LLM_ARCH_EXAONE4:
+            {
+                if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
+                    llm = std::make_unique<llm_build_exaone4<true>>(*this, params, gf);
+                } else {
+                    llm = std::make_unique<llm_build_exaone4<false>>(*this, params, gf);
+                }
+            } break;
         case LLM_ARCH_RWKV6:
             {
                 llm = std::make_unique<llm_build_rwkv6>(*this, params);
@@ -17430,6 +17624,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_ORION:
         case LLM_ARCH_NEMOTRON:
         case LLM_ARCH_EXAONE:
+        case LLM_ARCH_EXAONE4:
         case LLM_ARCH_MINICPM3:
         case LLM_ARCH_DOTS1:
         case LLM_ARCH_HUNYUAN_MOE:
index 2181c01e31a875b74befdfb63c6943e241bd7495..e8bae645088dded8d15be3b0b58ecafec53c8c19 100644 (file)
@@ -1925,6 +1925,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
             } else if (
                 tokenizer_pre == "exaone") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
+            } else if (
+                tokenizer_pre == "exaone4") {
+                pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
             } else if (
                 tokenizer_pre == "chameleon") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;