return GGUF_TYPE_SIZE[type];
}
-static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
- GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
- GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
+static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
+ if (info->n_dims > GGML_MAX_DIMS) {
+ fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
+ return false;
+ }
+
+ if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
+ fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
+ return false;
+ }
+
+ if (strlen(info->name.data) >= GGML_MAX_NAME) {
+ fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
+ return false;
+ }
for (uint32_t i = 0; i < info->n_dims; ++i) {
- GGML_ASSERT(info->ne[i] > 0);
+ if (info->ne[i] <= 0) {
+ fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
+ return false;
+ }
}
// prevent overflow for total number of elements
- GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
- GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
- GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
+ if (INT64_MAX/info->ne[1] <= info->ne[0]) {
+ fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
+ return false;
+ }
+
+ if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
+ fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
+ return false;
+ }
+
+ if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
+ fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
+ return false;
+ }
+
+ return true;
}
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
- // TODO: return an error instead of crashing with GGML_ASSERT
- gguf_tensor_info_sanitize(info);
+ ok = ok && gguf_tensor_info_sanitize(info);
// make sure there is no duplicated tensor names
for (uint64_t j = 0; j < i && ok; ++j) {
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
- offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
+ if (tensor_idx < 0) {
+ throw std::runtime_error(format("tensor '%s' not found in the model", name));
+ }
+ offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
}
if (flags & llama_model_loader::TENSOR_NOT_REQUIRED) {
return nullptr;
}
- throw std::runtime_error(format("missing tensor %s", tn.str().c_str()));
+ throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
}
// some models use the token embedding tensor as the output, but since these are used in different layers and with different ops