**Features:**
* LLM inference of F16 and quantized models on GPU and CPU
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
+ * [Anthropic Messages API](https://docs.anthropic.com/en/api/messages) compatible chat completions
* Reranking endpoint (https://github.com/ggml-org/llama.cpp/pull/9510)
* Parallel decoding with multi-user support
* Continuous batching
}'
```
+### POST `/v1/messages`: Anthropic-compatible Messages API
+
+Given a list of `messages`, returns the assistant's response. Streaming is supported via Server-Sent Events. While no strong claims of compatibility with the Anthropic API spec are made, in our experience it suffices to support many apps.
+
+*Options:*
+
+See [Anthropic Messages API documentation](https://docs.anthropic.com/en/api/messages). Tool use requires `--jinja` flag.
+
+`model`: Model identifier (required)
+
+`messages`: Array of message objects with `role` and `content` (required)
+
+`max_tokens`: Maximum tokens to generate (default: 4096)
+
+`system`: System prompt as string or array of content blocks
+
+`temperature`: Sampling temperature 0-1 (default: 1.0)
+
+`top_p`: Nucleus sampling (default: 1.0)
+
+`top_k`: Top-k sampling
+
+`stop_sequences`: Array of stop sequences
+
+`stream`: Enable streaming (default: false)
+
+`tools`: Array of tool definitions (requires `--jinja`)
+
+`tool_choice`: Tool selection mode (`{"type": "auto"}`, `{"type": "any"}`, or `{"type": "tool", "name": "..."}`)
+
+*Examples:*
+
+```shell
+curl http://localhost:8080/v1/messages \
+ -H "Content-Type: application/json" \
+ -H "x-api-key: your-api-key" \
+ -d '{
+ "model": "gpt-4",
+ "max_tokens": 1024,
+ "system": "You are a helpful assistant.",
+ "messages": [
+ {"role": "user", "content": "Hello!"}
+ ]
+ }'
+```
+
+### POST `/v1/messages/count_tokens`: Token Counting
+
+Counts the number of tokens in a request without generating a response.
+
+Accepts the same parameters as `/v1/messages`. The `max_tokens` parameter is not required.
+
+*Example:*
+
+```shell
+curl http://localhost:8080/v1/messages/count_tokens \
+ -H "Content-Type: application/json" \
+ -d '{
+ "model": "gpt-4",
+ "messages": [
+ {"role": "user", "content": "Hello!"}
+ ]
+ }'
+```
+
+*Response:*
+
+```json
+{"input_tokens": 10}
+```
+
## More examples
### Interactive mode
return result;
}
-
//
// OAI utils
//
return llama_params;
}
+json convert_anthropic_to_oai(const json & body) {
+ json oai_body;
+
+ // Convert system prompt
+ json oai_messages = json::array();
+ auto system_param = json_value(body, "system", json());
+ if (!system_param.is_null()) {
+ std::string system_content;
+
+ if (system_param.is_string()) {
+ system_content = system_param.get<std::string>();
+ } else if (system_param.is_array()) {
+ for (const auto & block : system_param) {
+ if (json_value(block, "type", std::string()) == "text") {
+ system_content += json_value(block, "text", std::string());
+ }
+ }
+ }
+
+ oai_messages.push_back({
+ {"role", "system"},
+ {"content", system_content}
+ });
+ }
+
+ // Convert messages
+ if (!body.contains("messages")) {
+ throw std::runtime_error("'messages' is required");
+ }
+ const json & messages = body.at("messages");
+ if (messages.is_array()) {
+ for (const auto & msg : messages) {
+ std::string role = json_value(msg, "role", std::string());
+
+ if (!msg.contains("content")) {
+ if (role == "assistant") {
+ continue;
+ }
+ oai_messages.push_back(msg);
+ continue;
+ }
+
+ const json & content = msg.at("content");
+
+ if (content.is_string()) {
+ oai_messages.push_back(msg);
+ continue;
+ }
+
+ if (!content.is_array()) {
+ oai_messages.push_back(msg);
+ continue;
+ }
+
+ json tool_calls = json::array();
+ json converted_content = json::array();
+ json tool_results = json::array();
+ bool has_tool_calls = false;
+
+ for (const auto & block : content) {
+ std::string type = json_value(block, "type", std::string());
+
+ if (type == "text") {
+ converted_content.push_back(block);
+ } else if (type == "image") {
+ json source = json_value(block, "source", json::object());
+ std::string source_type = json_value(source, "type", std::string());
+
+ if (source_type == "base64") {
+ std::string media_type = json_value(source, "media_type", std::string("image/jpeg"));
+ std::string data = json_value(source, "data", std::string());
+ std::ostringstream ss;
+ ss << "data:" << media_type << ";base64," << data;
+
+ converted_content.push_back({
+ {"type", "image_url"},
+ {"image_url", {
+ {"url", ss.str()}
+ }}
+ });
+ } else if (source_type == "url") {
+ std::string url = json_value(source, "url", std::string());
+ converted_content.push_back({
+ {"type", "image_url"},
+ {"image_url", {
+ {"url", url}
+ }}
+ });
+ }
+ } else if (type == "tool_use") {
+ tool_calls.push_back({
+ {"id", json_value(block, "id", std::string())},
+ {"type", "function"},
+ {"function", {
+ {"name", json_value(block, "name", std::string())},
+ {"arguments", json_value(block, "input", json::object()).dump()}
+ }}
+ });
+ has_tool_calls = true;
+ } else if (type == "tool_result") {
+ std::string tool_use_id = json_value(block, "tool_use_id", std::string());
+
+ auto result_content = json_value(block, "content", json());
+ std::string result_text;
+ if (result_content.is_string()) {
+ result_text = result_content.get<std::string>();
+ } else if (result_content.is_array()) {
+ for (const auto & c : result_content) {
+ if (json_value(c, "type", std::string()) == "text") {
+ result_text += json_value(c, "text", std::string());
+ }
+ }
+ }
+
+ tool_results.push_back({
+ {"role", "tool"},
+ {"tool_call_id", tool_use_id},
+ {"content", result_text}
+ });
+ }
+ }
+
+ if (!converted_content.empty() || has_tool_calls) {
+ json new_msg = {{"role", role}};
+ if (!converted_content.empty()) {
+ new_msg["content"] = converted_content;
+ } else if (has_tool_calls) {
+ new_msg["content"] = "";
+ }
+ if (!tool_calls.empty()) {
+ new_msg["tool_calls"] = tool_calls;
+ }
+ oai_messages.push_back(new_msg);
+ }
+
+ for (const auto & tool_msg : tool_results) {
+ oai_messages.push_back(tool_msg);
+ }
+ }
+ }
+
+ oai_body["messages"] = oai_messages;
+
+ // Convert tools
+ if (body.contains("tools")) {
+ const json & tools = body.at("tools");
+ if (tools.is_array()) {
+ json oai_tools = json::array();
+ for (const auto & tool : tools) {
+ oai_tools.push_back({
+ {"type", "function"},
+ {"function", {
+ {"name", json_value(tool, "name", std::string())},
+ {"description", json_value(tool, "description", std::string())},
+ {"parameters", tool.contains("input_schema") ? tool.at("input_schema") : json::object()}
+ }}
+ });
+ }
+ oai_body["tools"] = oai_tools;
+ }
+ }
+
+ // Convert tool_choice
+ if (body.contains("tool_choice")) {
+ const json & tc = body.at("tool_choice");
+ if (tc.is_object()) {
+ std::string type = json_value(tc, "type", std::string());
+ if (type == "auto") {
+ oai_body["tool_choice"] = "auto";
+ } else if (type == "any" || type == "tool") {
+ oai_body["tool_choice"] = "required";
+ }
+ }
+ }
+
+ // Convert stop_sequences to stop
+ if (body.contains("stop_sequences")) {
+ oai_body["stop"] = body.at("stop_sequences");
+ }
+
+ // Handle max_tokens (required in Anthropic, but we're permissive)
+ if (body.contains("max_tokens")) {
+ oai_body["max_tokens"] = body.at("max_tokens");
+ } else {
+ oai_body["max_tokens"] = 4096;
+ }
+
+ // Pass through common params
+ for (const auto & key : {"temperature", "top_p", "top_k", "stream"}) {
+ if (body.contains(key)) {
+ oai_body[key] = body.at(key);
+ }
+ }
+
+ // Handle Anthropic-specific thinking param
+ if (body.contains("thinking")) {
+ json thinking = json_value(body, "thinking", json::object());
+ std::string thinking_type = json_value(thinking, "type", std::string());
+ if (thinking_type == "enabled") {
+ int budget_tokens = json_value(thinking, "budget_tokens", 10000);
+ oai_body["thinking_budget_tokens"] = budget_tokens;
+ }
+ }
+
+ // Handle Anthropic-specific metadata param
+ if (body.contains("metadata")) {
+ json metadata = json_value(body, "metadata", json::object());
+ std::string user_id = json_value(metadata, "user_id", std::string());
+ if (!user_id.empty()) {
+ oai_body["__metadata_user_id"] = user_id;
+ }
+ }
+
+ return oai_body;
+}
+
json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64) {
json data = json::array();
int32_t n_tokens = 0;
// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
-std::string format_sse(const json & data) {
+std::string format_oai_sse(const json & data) {
std::ostringstream ss;
auto send_single = [&ss](const json & data) {
ss << "data: " <<
return ss.str();
}
+std::string format_anthropic_sse(const json & data) {
+ std::ostringstream ss;
+
+ auto send_event = [&ss](const json & event_obj) {
+ if (event_obj.contains("event") && event_obj.contains("data")) {
+ ss << "event: " << event_obj.at("event").get<std::string>() << "\n";
+ ss << "data: " << safe_json_to_str(event_obj.at("data")) << "\n\n";
+ } else {
+ ss << "data: " << safe_json_to_str(event_obj) << "\n\n";
+ }
+ };
+
+ if (data.is_array()) {
+ for (const auto & event : data) {
+ send_event(event);
+ }
+ } else {
+ send_event(data);
+ }
+
+ return ss.str();
+}
+
bool is_valid_utf8(const std::string & str) {
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
const unsigned char* end = bytes + str.length();
const oaicompat_parser_options & opt,
std::vector<raw_buffer> & out_files);
+// convert Anthropic Messages API format to OpenAI Chat Completions API format
+json convert_anthropic_to_oai(const json & body);
+
// TODO: move it to server-task.cpp
json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false);
// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
-std::string format_sse(const json & data);
+std::string format_oai_sse(const json & data);
+
+// format Anthropic-style SSE with event types
+std::string format_anthropic_sse(const json & data);
bool is_valid_utf8(const std::string & str);
return true;
}
- // Check for API key in the header
- auto auth_header = req.get_header_value("Authorization");
+ // Check for API key in the Authorization header
+ std::string req_api_key = req.get_header_value("Authorization");
+ if (req_api_key.empty()) {
+ // retry with anthropic header
+ req_api_key = req.get_header_value("X-Api-Key");
+ }
+ // remove the "Bearer " prefix if needed
std::string prefix = "Bearer ";
- if (auth_header.substr(0, prefix.size()) == prefix) {
- std::string received_api_key = auth_header.substr(prefix.size());
- if (std::find(api_keys.begin(), api_keys.end(), received_api_key) != api_keys.end()) {
- return true; // API key is valid
- }
+ if (req_api_key.substr(0, prefix.size()) == prefix) {
+ req_api_key = req_api_key.substr(prefix.size());
+ }
+
+ // validate the API key
+ if (std::find(api_keys.begin(), api_keys.end(), req_api_key) != api_keys.end()) {
+ return true; // API key is valid
}
// API key is invalid or not provided
// server_task_result_cmpl_final
//
json server_task_result_cmpl_final::to_json() {
- switch (oaicompat) {
- case OAICOMPAT_TYPE_NONE:
+ switch (res_type) {
+ case TASK_RESPONSE_TYPE_NONE:
return to_json_non_oaicompat();
- case OAICOMPAT_TYPE_COMPLETION:
+ case TASK_RESPONSE_TYPE_OAI_CMPL:
return to_json_oaicompat();
- case OAICOMPAT_TYPE_CHAT:
+ case TASK_RESPONSE_TYPE_OAI_CHAT:
return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
+ case TASK_RESPONSE_TYPE_ANTHROPIC:
+ return stream ? to_json_anthropic_stream() : to_json_anthropic();
default:
- GGML_ASSERT(false && "Invalid oaicompat_type");
+ GGML_ASSERT(false && "Invalid task_response_type");
}
}
return deltas;
}
+json server_task_result_cmpl_final::to_json_anthropic() {
+ std::string stop_reason = "max_tokens";
+ if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
+ stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
+ }
+
+ json content_blocks = json::array();
+
+ common_chat_msg msg;
+ if (!oaicompat_msg.empty()) {
+ msg = oaicompat_msg;
+ } else {
+ msg.role = "assistant";
+ msg.content = content;
+ }
+
+ if (!msg.content.empty()) {
+ content_blocks.push_back({
+ {"type", "text"},
+ {"text", msg.content}
+ });
+ }
+
+ for (const auto & tool_call : msg.tool_calls) {
+ json tool_use_block = {
+ {"type", "tool_use"},
+ {"id", tool_call.id},
+ {"name", tool_call.name}
+ };
+
+ try {
+ tool_use_block["input"] = json::parse(tool_call.arguments);
+ } catch (const std::exception &) {
+ tool_use_block["input"] = json::object();
+ }
+
+ content_blocks.push_back(tool_use_block);
+ }
+
+ json res = {
+ {"id", oaicompat_cmpl_id},
+ {"type", "message"},
+ {"role", "assistant"},
+ {"content", content_blocks},
+ {"model", oaicompat_model},
+ {"stop_reason", stop_reason},
+ {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
+ {"usage", {
+ {"input_tokens", n_prompt_tokens},
+ {"output_tokens", n_decoded}
+ }}
+ };
+
+ return res;
+}
+
+json server_task_result_cmpl_final::to_json_anthropic_stream() {
+ json events = json::array();
+
+ std::string stop_reason = "max_tokens";
+ if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
+ stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
+ }
+
+ bool has_text = !oaicompat_msg.content.empty();
+ size_t num_tool_calls = oaicompat_msg.tool_calls.size();
+
+ bool text_block_started = false;
+ std::unordered_set<size_t> tool_calls_started;
+
+ for (const auto & diff : oaicompat_msg_diffs) {
+ if (!diff.content_delta.empty()) {
+ if (!text_block_started) {
+ events.push_back({
+ {"event", "content_block_start"},
+ {"data", {
+ {"type", "content_block_start"},
+ {"index", 0},
+ {"content_block", {
+ {"type", "text"},
+ {"text", ""}
+ }}
+ }}
+ });
+ text_block_started = true;
+ }
+
+ events.push_back({
+ {"event", "content_block_delta"},
+ {"data", {
+ {"type", "content_block_delta"},
+ {"index", 0},
+ {"delta", {
+ {"type", "text_delta"},
+ {"text", diff.content_delta}
+ }}
+ }}
+ });
+ }
+
+ if (diff.tool_call_index != std::string::npos) {
+ size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
+
+ if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
+ const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
+
+ events.push_back({
+ {"event", "content_block_start"},
+ {"data", {
+ {"type", "content_block_start"},
+ {"index", content_block_index},
+ {"content_block", {
+ {"type", "tool_use"},
+ {"id", full_tool_call.id},
+ {"name", full_tool_call.name}
+ }}
+ }}
+ });
+ tool_calls_started.insert(diff.tool_call_index);
+ }
+
+ if (!diff.tool_call_delta.arguments.empty()) {
+ events.push_back({
+ {"event", "content_block_delta"},
+ {"data", {
+ {"type", "content_block_delta"},
+ {"index", content_block_index},
+ {"delta", {
+ {"type", "input_json_delta"},
+ {"partial_json", diff.tool_call_delta.arguments}
+ }}
+ }}
+ });
+ }
+ }
+ }
+
+ if (has_text) {
+ events.push_back({
+ {"event", "content_block_stop"},
+ {"data", {
+ {"type", "content_block_stop"},
+ {"index", 0}
+ }}
+ });
+ }
+
+ for (size_t i = 0; i < num_tool_calls; i++) {
+ size_t content_block_index = (has_text ? 1 : 0) + i;
+ events.push_back({
+ {"event", "content_block_stop"},
+ {"data", {
+ {"type", "content_block_stop"},
+ {"index", content_block_index}
+ }}
+ });
+ }
+
+ events.push_back({
+ {"event", "message_delta"},
+ {"data", {
+ {"type", "message_delta"},
+ {"delta", {
+ {"stop_reason", stop_reason},
+ {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
+ }},
+ {"usage", {
+ {"output_tokens", n_decoded}
+ }}
+ }}
+ });
+
+ events.push_back({
+ {"event", "message_stop"},
+ {"data", {
+ {"type", "message_stop"}
+ }}
+ });
+
+ return events;
+}
+
//
// server_task_result_cmpl_partial
//
json server_task_result_cmpl_partial::to_json() {
- switch (oaicompat) {
- case OAICOMPAT_TYPE_NONE:
+ switch (res_type) {
+ case TASK_RESPONSE_TYPE_NONE:
return to_json_non_oaicompat();
- case OAICOMPAT_TYPE_COMPLETION:
+ case TASK_RESPONSE_TYPE_OAI_CMPL:
return to_json_oaicompat();
- case OAICOMPAT_TYPE_CHAT:
+ case TASK_RESPONSE_TYPE_OAI_CHAT:
return to_json_oaicompat_chat();
+ case TASK_RESPONSE_TYPE_ANTHROPIC:
+ return to_json_anthropic();
default:
- GGML_ASSERT(false && "Invalid oaicompat_type");
+ GGML_ASSERT(false && "Invalid task_response_type");
}
}
// server_task_result_embd
//
json server_task_result_embd::to_json() {
- return oaicompat == OAICOMPAT_TYPE_EMBEDDING
+ return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
? to_json_oaicompat()
: to_json_non_oaicompat();
}
};
}
+json server_task_result_cmpl_partial::to_json_anthropic() {
+ json events = json::array();
+ bool first = (n_decoded == 1);
+ static bool text_block_started = false;
+
+ if (first) {
+ text_block_started = false;
+
+ events.push_back({
+ {"event", "message_start"},
+ {"data", {
+ {"type", "message_start"},
+ {"message", {
+ {"id", oaicompat_cmpl_id},
+ {"type", "message"},
+ {"role", "assistant"},
+ {"content", json::array()},
+ {"model", oaicompat_model},
+ {"stop_reason", nullptr},
+ {"stop_sequence", nullptr},
+ {"usage", {
+ {"input_tokens", n_prompt_tokens},
+ {"output_tokens", 0}
+ }}
+ }}
+ }}
+ });
+ }
+
+ for (const auto & diff : oaicompat_msg_diffs) {
+ if (!diff.content_delta.empty()) {
+ if (!text_block_started) {
+ events.push_back({
+ {"event", "content_block_start"},
+ {"data", {
+ {"type", "content_block_start"},
+ {"index", 0},
+ {"content_block", {
+ {"type", "text"},
+ {"text", ""}
+ }}
+ }}
+ });
+ text_block_started = true;
+ }
+
+ events.push_back({
+ {"event", "content_block_delta"},
+ {"data", {
+ {"type", "content_block_delta"},
+ {"index", 0},
+ {"delta", {
+ {"type", "text_delta"},
+ {"text", diff.content_delta}
+ }}
+ }}
+ });
+ }
+
+ if (diff.tool_call_index != std::string::npos) {
+ size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
+
+ if (!diff.tool_call_delta.name.empty()) {
+ events.push_back({
+ {"event", "content_block_start"},
+ {"data", {
+ {"type", "content_block_start"},
+ {"index", content_block_index},
+ {"content_block", {
+ {"type", "tool_use"},
+ {"id", diff.tool_call_delta.id},
+ {"name", diff.tool_call_delta.name}
+ }}
+ }}
+ });
+ }
+
+ if (!diff.tool_call_delta.arguments.empty()) {
+ events.push_back({
+ {"event", "content_block_delta"},
+ {"data", {
+ {"type", "content_block_delta"},
+ {"index", content_block_index},
+ {"delta", {
+ {"type", "input_json_delta"},
+ {"partial_json", diff.tool_call_delta.arguments}
+ }}
+ }}
+ });
+ }
+ }
+ }
+
+ return events;
+}
+
//
// server_task_result_error
//
};
// TODO: change this to more generic "response_format" to replace the "format_response_*" in server-common
-enum oaicompat_type {
- OAICOMPAT_TYPE_NONE,
- OAICOMPAT_TYPE_CHAT,
- OAICOMPAT_TYPE_COMPLETION,
- OAICOMPAT_TYPE_EMBEDDING,
+enum task_response_type {
+ TASK_RESPONSE_TYPE_NONE, // llama.cpp native format
+ TASK_RESPONSE_TYPE_OAI_CHAT,
+ TASK_RESPONSE_TYPE_OAI_CMPL,
+ TASK_RESPONSE_TYPE_OAI_EMBD,
+ TASK_RESPONSE_TYPE_ANTHROPIC,
};
enum stop_type {
struct common_params_sampling sampling;
struct common_params_speculative speculative;
- // OAI-compat fields
+ // response formatting
bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
+ task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
task_params generation_params;
- // OAI-compat fields
- bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- std::string oaicompat_model;
- std::string oaicompat_cmpl_id;
- common_chat_msg oaicompat_msg;
+ // response formatting
+ bool verbose = false;
+ task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
+ std::string oaicompat_model;
+ std::string oaicompat_cmpl_id;
+ common_chat_msg oaicompat_msg;
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
json to_json_oaicompat_chat();
json to_json_oaicompat_chat_stream();
+
+ json to_json_anthropic();
+
+ json to_json_anthropic_stream();
};
struct server_task_result_cmpl_partial : server_task_result {
result_timings timings;
result_prompt_progress progress;
- // OAI-compat fields
- bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- std::string oaicompat_model;
- std::string oaicompat_cmpl_id;
+ // response formatting
+ bool verbose = false;
+ task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
+ std::string oaicompat_model;
+ std::string oaicompat_cmpl_id;
std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
virtual int get_index() override {
json to_json_oaicompat();
json to_json_oaicompat_chat();
+
+ json to_json_anthropic();
};
struct server_task_result_embd : server_task_result {
int32_t n_tokens;
- // OAI-compat fields
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
+ // response formatting
+ task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
virtual int get_index() override {
return index;
res->post_sampling_probs = slot.task->params.post_sampling_probs;
res->verbose = slot.task->params.verbose;
- res->oaicompat = slot.task->params.oaicompat;
+ res->res_type = slot.task->params.res_type;
res->oaicompat_model = slot.task->params.oaicompat_model;
res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
res->verbose = slot.task->params.verbose;
res->stream = slot.task->params.stream;
res->include_usage = slot.task->params.include_usage;
- res->oaicompat = slot.task->params.oaicompat;
+ res->res_type = slot.task->params.res_type;
res->oaicompat_model = slot.task->params.oaicompat_model;
res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
res->id = slot.task->id;
res->index = slot.task->index;
res->n_tokens = slot.task->n_tokens();
- res->oaicompat = slot.task->params.oaicompat;
+ res->res_type = slot.task->params.res_type;
const int n_embd = llama_model_n_embd(model);
data,
files,
req.should_stop,
- OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
+ TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible
};
server_http_context::handler_t post_completions = [this](const server_http_req & req) {
body,
files,
req.should_stop,
- OAICOMPAT_TYPE_NONE);
+ TASK_RESPONSE_TYPE_NONE);
};
server_http_context::handler_t post_completions_oai = [this](const server_http_req & req) {
body,
files,
req.should_stop,
- OAICOMPAT_TYPE_COMPLETION);
+ TASK_RESPONSE_TYPE_OAI_CMPL);
};
server_http_context::handler_t post_chat_completions = [this](const server_http_req & req) {
body_parsed,
files,
req.should_stop,
- OAICOMPAT_TYPE_CHAT);
+ TASK_RESPONSE_TYPE_OAI_CHAT);
+ };
+
+ server_http_context::handler_t post_anthropic_messages = [this](const server_http_req & req) {
+ std::vector<raw_buffer> files;
+ json body = convert_anthropic_to_oai(json::parse(req.body));
+ json body_parsed = oaicompat_chat_params_parse(
+ body,
+ ctx_server.oai_parser_opt,
+ files);
+ return handle_completions_impl(
+ SERVER_TASK_TYPE_COMPLETION,
+ body_parsed,
+ files,
+ req.should_stop,
+ TASK_RESPONSE_TYPE_ANTHROPIC);
+ };
+
+ server_http_context::handler_t post_anthropic_count_tokens = [this](const server_http_req & req) {
+ auto res = std::make_unique<server_res_generator>(ctx_server);
+ std::vector<raw_buffer> files;
+ json body = convert_anthropic_to_oai(json::parse(req.body));
+ json body_parsed = oaicompat_chat_params_parse(
+ body,
+ ctx_server.oai_parser_opt,
+ files);
+
+ json prompt = body_parsed.at("prompt");
+ llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true);
+
+ res->ok({{"input_tokens", static_cast<int>(tokens.size())}});
+ return res;
};
// same with handle_chat_completions, but without inference part
};
server_http_context::handler_t post_embeddings = [this](const server_http_req & req) {
- return handle_embeddings_impl(req, OAICOMPAT_TYPE_NONE);
+ return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE);
};
server_http_context::handler_t post_embeddings_oai = [this](const server_http_req & req) {
- return handle_embeddings_impl(req, OAICOMPAT_TYPE_EMBEDDING);
+ return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD);
};
server_http_context::handler_t post_rerank = [this](const server_http_req & req) {
const json & data,
const std::vector<raw_buffer> & files,
const std::function<bool()> & should_stop,
- oaicompat_type oaicompat) {
+ task_response_type res_type) {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
auto res = std::make_unique<server_res_generator>(ctx_server);
// process prompt
std::vector<server_tokens> inputs;
- if (oaicompat && ctx_server.mctx != nullptr) {
+ if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) {
// This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
} else {
task.id_slot = json_value(data, "id_slot", -1);
// OAI-compat
- task.params.oaicompat = oaicompat;
- task.params.oaicompat_cmpl_id = completion_id;
+ task.params.res_type = res_type;
+ task.params.oaicompat_cmpl_id = completion_id;
// oaicompat_model is already populated by params_from_json_cmpl
tasks.push_back(std::move(task));
}
// next responses are streamed
- res->data = format_sse(first_result->to_json()); // to be sent immediately
+ if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+ res->data = format_anthropic_sse(first_result->to_json());
+ } else {
+ res->data = format_oai_sse(first_result->to_json()); // to be sent immediately
+ }
res->status = 200;
res->content_type = "text/event-stream";
- res->next = [res_this = res.get(), oaicompat, &should_stop](std::string & output) -> bool {
+ res->next = [res_this = res.get(), res_type, &should_stop](std::string & output) -> bool {
if (should_stop()) {
SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
return false; // should_stop condition met
// check if there is more data
if (!rd.has_next()) {
- if (oaicompat != OAICOMPAT_TYPE_NONE) {
+ if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+ // Anthropic doesn't send [DONE], message_stop was already sent
+ output = "";
+ } else if (res_type != TASK_RESPONSE_TYPE_NONE) {
output = "data: [DONE]\n\n";
} else {
output = "";
// send the results
json res_json = result->to_json();
if (result->is_error()) {
- output = format_sse(json {{ "error", res_json }});
+ if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+ output = format_anthropic_sse({
+ {"event", "error"},
+ {"data", res_json},
+ });
+ } else {
+ output = format_oai_sse(json {{ "error", res_json }});
+ }
SRV_DBG("%s", "error received during streaming, terminating stream\n");
return false; // terminate on error
} else {
dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
|| dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
);
- output = format_sse(res_json);
+ if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+ output = format_anthropic_sse(res_json);
+ } else {
+ output = format_oai_sse(res_json);
+ }
}
// has next data, continue
return res;
}
- std::unique_ptr<server_res_generator> handle_embeddings_impl(const server_http_req & req, oaicompat_type oaicompat) {
+ std::unique_ptr<server_res_generator> handle_embeddings_impl(const server_http_req & req, task_response_type res_type) {
auto res = std::make_unique<server_res_generator>(ctx_server);
if (!ctx_server.params_base.embedding) {
res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return res;
}
- if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
+ if (res_type != TASK_RESPONSE_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
return res;
}
if (body.count("input") != 0) {
prompt = body.at("input");
} else if (body.contains("content")) {
- oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
+ res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible
prompt = body.at("content");
} else {
res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
task.tokens = std::move(tokenized_prompts[i]);
// OAI-compat
- task.params.oaicompat = oaicompat;
+ task.params.res_type = res_type;
task.params.embd_normalize = embd_normalize;
tasks.push_back(std::move(task));
}
// write JSON response
- json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
+ json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD
? format_embeddings_response_oaicompat(body, responses, use_base64)
: json(responses);
res->ok(root);
ctx_http.post("/chat/completions", ex_wrapper(routes.post_chat_completions));
ctx_http.post("/v1/chat/completions", ex_wrapper(routes.post_chat_completions));
ctx_http.post("/api/chat", ex_wrapper(routes.post_chat_completions)); // ollama specific endpoint
+ ctx_http.post("/v1/messages", ex_wrapper(routes.post_anthropic_messages)); // anthropic messages API
+ ctx_http.post("/v1/messages/count_tokens", ex_wrapper(routes.post_anthropic_count_tokens)); // anthropic token counting
ctx_http.post("/infill", ex_wrapper(routes.post_infill));
ctx_http.post("/embedding", ex_wrapper(routes.post_embeddings)); // legacy
ctx_http.post("/embeddings", ex_wrapper(routes.post_embeddings));
) # copy the set to prevent 'Set changed size during iteration'
for server in instances:
server.stop()
+
+
+@pytest.fixture(scope="module", autouse=True)
+def do_something():
+ # this will be run once per test session, before any tests
+ ServerPreset.load_all()
server = ServerPreset.tinyllama2()
-@pytest.fixture(scope="session", autouse=True)
-def do_something():
- # this will be run once per test session, before any tests
- ServerPreset.load_all()
-
-
@pytest.fixture(autouse=True)
def create_server():
global server
--- /dev/null
+#!/usr/bin/env python3
+import pytest
+import base64
+import requests
+
+from utils import *
+
+server: ServerProcess
+
+
+def get_test_image_base64() -> str:
+ """Get a test image in base64 format"""
+ # Use the same test image as test_vision_api.py
+ IMG_URL = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/test/11_truck.png"
+ response = requests.get(IMG_URL)
+ response.raise_for_status()
+ return base64.b64encode(response.content).decode("utf-8")
+
+@pytest.fixture(autouse=True)
+def create_server():
+ global server
+ server = ServerPreset.tinyllama2()
+ server.model_alias = "tinyllama-2-anthropic"
+ server.server_port = 8082
+ server.n_slots = 1
+ server.n_ctx = 8192
+ server.n_batch = 2048
+
+
+@pytest.fixture
+def vision_server():
+ """Separate fixture for vision tests that require multimodal support"""
+ global server
+ server = ServerPreset.tinygemma3()
+ server.offline = False # Allow downloading the model
+ server.model_alias = "tinygemma3-anthropic"
+ server.server_port = 8083 # Different port to avoid conflicts
+ server.n_slots = 1
+ return server
+
+
+# Basic message tests
+
+def test_anthropic_messages_basic():
+ """Test basic Anthropic messages endpoint"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": [
+ {"role": "user", "content": "Say hello"}
+ ]
+ })
+
+ assert res.status_code == 200, f"Expected 200, got {res.status_code}"
+ assert res.body["type"] == "message", f"Expected type 'message', got {res.body.get('type')}"
+ assert res.body["role"] == "assistant", f"Expected role 'assistant', got {res.body.get('role')}"
+ assert "content" in res.body, "Missing 'content' field"
+ assert isinstance(res.body["content"], list), "Content should be an array"
+ assert len(res.body["content"]) > 0, "Content array should not be empty"
+ assert res.body["content"][0]["type"] == "text", "First content block should be text"
+ assert "text" in res.body["content"][0], "Text content block missing 'text' field"
+ assert res.body["stop_reason"] in ["end_turn", "max_tokens"], f"Invalid stop_reason: {res.body.get('stop_reason')}"
+ assert "usage" in res.body, "Missing 'usage' field"
+ assert "input_tokens" in res.body["usage"], "Missing usage.input_tokens"
+ assert "output_tokens" in res.body["usage"], "Missing usage.output_tokens"
+ assert isinstance(res.body["usage"]["input_tokens"], int), "input_tokens should be integer"
+ assert isinstance(res.body["usage"]["output_tokens"], int), "output_tokens should be integer"
+ assert res.body["usage"]["output_tokens"] > 0, "Should have generated some tokens"
+ # Anthropic API should NOT include timings
+ assert "timings" not in res.body, "Anthropic API should not include timings field"
+
+
+def test_anthropic_messages_with_system():
+ """Test messages with system prompt"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "system": "You are a helpful assistant.",
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+ assert len(res.body["content"]) > 0
+
+
+def test_anthropic_messages_multipart_content():
+ """Test messages with multipart content blocks"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": [
+ {
+ "role": "user",
+ "content": [
+ {"type": "text", "text": "What is"},
+ {"type": "text", "text": " the answer?"}
+ ]
+ }
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_messages_conversation():
+ """Test multi-turn conversation"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": [
+ {"role": "user", "content": "Hello"},
+ {"role": "assistant", "content": "Hi there!"},
+ {"role": "user", "content": "How are you?"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+# Streaming tests
+
+def test_anthropic_messages_streaming():
+ """Test streaming messages"""
+ server.start()
+
+ res = server.make_stream_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 30,
+ "messages": [
+ {"role": "user", "content": "Say hello"}
+ ],
+ "stream": True
+ })
+
+ events = []
+ for data in res:
+ # Each event should have type and other fields
+ assert "type" in data, f"Missing 'type' in event: {data}"
+ events.append(data)
+
+ # Verify event sequence
+ event_types = [e["type"] for e in events]
+ assert "message_start" in event_types, "Missing message_start event"
+ assert "content_block_start" in event_types, "Missing content_block_start event"
+ assert "content_block_delta" in event_types, "Missing content_block_delta event"
+ assert "content_block_stop" in event_types, "Missing content_block_stop event"
+ assert "message_delta" in event_types, "Missing message_delta event"
+ assert "message_stop" in event_types, "Missing message_stop event"
+
+ # Check message_start structure
+ message_start = next(e for e in events if e["type"] == "message_start")
+ assert "message" in message_start, "message_start missing 'message' field"
+ assert message_start["message"]["type"] == "message"
+ assert message_start["message"]["role"] == "assistant"
+ assert message_start["message"]["content"] == []
+ assert "usage" in message_start["message"]
+ assert message_start["message"]["usage"]["input_tokens"] > 0
+
+ # Check content_block_start
+ block_start = next(e for e in events if e["type"] == "content_block_start")
+ assert "index" in block_start, "content_block_start missing 'index'"
+ assert block_start["index"] == 0, "First content block should be at index 0"
+ assert "content_block" in block_start
+ assert block_start["content_block"]["type"] == "text"
+
+ # Check content_block_delta
+ deltas = [e for e in events if e["type"] == "content_block_delta"]
+ assert len(deltas) > 0, "Should have at least one content_block_delta"
+ for delta in deltas:
+ assert "index" in delta
+ assert "delta" in delta
+ assert delta["delta"]["type"] == "text_delta"
+ assert "text" in delta["delta"]
+
+ # Check content_block_stop
+ block_stop = next(e for e in events if e["type"] == "content_block_stop")
+ assert "index" in block_stop
+ assert block_stop["index"] == 0
+
+ # Check message_delta
+ message_delta = next(e for e in events if e["type"] == "message_delta")
+ assert "delta" in message_delta
+ assert "stop_reason" in message_delta["delta"]
+ assert message_delta["delta"]["stop_reason"] in ["end_turn", "max_tokens"]
+ assert "usage" in message_delta
+ assert message_delta["usage"]["output_tokens"] > 0
+
+ # Check message_stop
+ message_stop = next(e for e in events if e["type"] == "message_stop")
+ # message_stop should NOT have timings for Anthropic API
+ assert "timings" not in message_stop, "Anthropic streaming should not include timings"
+
+
+# Token counting tests
+
+def test_anthropic_count_tokens():
+ """Test token counting endpoint"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages/count_tokens", data={
+ "model": "test",
+ "messages": [
+ {"role": "user", "content": "Hello world"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert "input_tokens" in res.body
+ assert isinstance(res.body["input_tokens"], int)
+ assert res.body["input_tokens"] > 0
+ # Should only have input_tokens, no other fields
+ assert "output_tokens" not in res.body
+
+
+def test_anthropic_count_tokens_with_system():
+ """Test token counting with system prompt"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages/count_tokens", data={
+ "model": "test",
+ "system": "You are a helpful assistant.",
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["input_tokens"] > 0
+
+
+def test_anthropic_count_tokens_no_max_tokens():
+ """Test that count_tokens doesn't require max_tokens"""
+ server.start()
+
+ # max_tokens is NOT required for count_tokens
+ res = server.make_request("POST", "/v1/messages/count_tokens", data={
+ "model": "test",
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert "input_tokens" in res.body
+
+
+# Tool use tests
+
+def test_anthropic_tool_use_basic():
+ """Test basic tool use"""
+ server.jinja = True
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 200,
+ "tools": [{
+ "name": "get_weather",
+ "description": "Get the current weather in a location",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "type": "string",
+ "description": "City name"
+ }
+ },
+ "required": ["location"]
+ }
+ }],
+ "messages": [
+ {"role": "user", "content": "What's the weather in Paris?"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+ assert len(res.body["content"]) > 0
+
+ # Check if model used the tool (it might not always, depending on the model)
+ content_types = [block.get("type") for block in res.body["content"]]
+
+ if "tool_use" in content_types:
+ # Model used the tool
+ assert res.body["stop_reason"] == "tool_use"
+
+ # Find the tool_use block
+ tool_block = next(b for b in res.body["content"] if b.get("type") == "tool_use")
+ assert "id" in tool_block
+ assert "name" in tool_block
+ assert tool_block["name"] == "get_weather"
+ assert "input" in tool_block
+ assert isinstance(tool_block["input"], dict)
+
+
+def test_anthropic_tool_result():
+ """Test sending tool results back
+
+ This test verifies that tool_result blocks are properly converted to
+ role="tool" messages internally. Without proper conversion, this would
+ fail with a 500 error: "unsupported content[].type" because tool_result
+ blocks would remain in the user message content array.
+ """
+ server.jinja = True
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 100,
+ "messages": [
+ {"role": "user", "content": "What's the weather?"},
+ {
+ "role": "assistant",
+ "content": [
+ {
+ "type": "tool_use",
+ "id": "test123",
+ "name": "get_weather",
+ "input": {"location": "Paris"}
+ }
+ ]
+ },
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "tool_result",
+ "tool_use_id": "test123",
+ "content": "The weather is sunny, 25°C"
+ }
+ ]
+ }
+ ]
+ })
+
+ # This would be 500 with the old bug where tool_result blocks weren't converted
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+ # Model should respond to the tool result
+ assert len(res.body["content"]) > 0
+ assert res.body["content"][0]["type"] == "text"
+
+
+def test_anthropic_tool_result_with_text():
+ """Test tool result mixed with text content
+
+ This tests the edge case where a user message contains both text and
+ tool_result blocks. The server must properly split these into separate
+ messages: a user message with text, followed by tool messages.
+ Without proper handling, this would fail with 500: "unsupported content[].type"
+ """
+ server.jinja = True
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 100,
+ "messages": [
+ {"role": "user", "content": "What's the weather?"},
+ {
+ "role": "assistant",
+ "content": [
+ {
+ "type": "tool_use",
+ "id": "tool_1",
+ "name": "get_weather",
+ "input": {"location": "Paris"}
+ }
+ ]
+ },
+ {
+ "role": "user",
+ "content": [
+ {"type": "text", "text": "Here are the results:"},
+ {
+ "type": "tool_result",
+ "tool_use_id": "tool_1",
+ "content": "Sunny, 25°C"
+ }
+ ]
+ }
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+ assert len(res.body["content"]) > 0
+
+
+def test_anthropic_tool_result_error():
+ """Test tool result with error flag"""
+ server.jinja = True
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 100,
+ "messages": [
+ {"role": "user", "content": "Get the weather"},
+ {
+ "role": "assistant",
+ "content": [
+ {
+ "type": "tool_use",
+ "id": "test123",
+ "name": "get_weather",
+ "input": {"location": "InvalidCity"}
+ }
+ ]
+ },
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "tool_result",
+ "tool_use_id": "test123",
+ "is_error": True,
+ "content": "City not found"
+ }
+ ]
+ }
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_tool_streaming():
+ """Test streaming with tool use"""
+ server.jinja = True
+ server.start()
+
+ res = server.make_stream_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 200,
+ "stream": True,
+ "tools": [{
+ "name": "calculator",
+ "description": "Calculate math",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "expression": {"type": "string"}
+ },
+ "required": ["expression"]
+ }
+ }],
+ "messages": [
+ {"role": "user", "content": "Calculate 2+2"}
+ ]
+ })
+
+ events = []
+ for data in res:
+ events.append(data)
+
+ event_types = [e["type"] for e in events]
+
+ # Should have basic events
+ assert "message_start" in event_types
+ assert "message_stop" in event_types
+
+ # If tool was used, check for proper tool streaming
+ if any(e.get("type") == "content_block_start" and
+ e.get("content_block", {}).get("type") == "tool_use"
+ for e in events):
+ # Find tool use block start
+ tool_starts = [e for e in events if
+ e.get("type") == "content_block_start" and
+ e.get("content_block", {}).get("type") == "tool_use"]
+
+ assert len(tool_starts) > 0, "Should have tool_use content_block_start"
+
+ # Check index is correct (should be 0 if no text, 1 if there's text)
+ tool_start = tool_starts[0]
+ assert "index" in tool_start
+ assert tool_start["content_block"]["type"] == "tool_use"
+ assert "name" in tool_start["content_block"]
+
+
+# Vision/multimodal tests
+
+def test_anthropic_vision_format_accepted():
+ """Test that Anthropic vision format is accepted (format validation only)"""
+ server.start()
+
+ # Small 1x1 red PNG image in base64
+ red_pixel_png = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8DwHwAFBQIAX8jx0gAAAABJRU5ErkJggg=="
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 10,
+ "messages": [
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/png",
+ "data": red_pixel_png
+ }
+ },
+ {
+ "type": "text",
+ "text": "What is this?"
+ }
+ ]
+ }
+ ]
+ })
+
+ # Server accepts the format but tinyllama doesn't support images
+ # So it should return 500 with clear error message about missing mmproj
+ assert res.status_code == 500
+ assert "image input is not supported" in res.body.get("error", {}).get("message", "").lower()
+
+
+def test_anthropic_vision_base64_with_multimodal_model(vision_server):
+ """Test vision with base64 image using Anthropic format with multimodal model"""
+ global server
+ server = vision_server
+ server.start()
+
+ # Get test image in base64 format
+ image_base64 = get_test_image_base64()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 10,
+ "messages": [
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/png",
+ "data": image_base64
+ }
+ },
+ {
+ "type": "text",
+ "text": "What is this:\n"
+ }
+ ]
+ }
+ ]
+ })
+
+ assert res.status_code == 200, f"Expected 200, got {res.status_code}: {res.body}"
+ assert res.body["type"] == "message"
+ assert len(res.body["content"]) > 0
+ assert res.body["content"][0]["type"] == "text"
+ # The model should generate some response about the image
+ assert len(res.body["content"][0]["text"]) > 0
+
+
+# Parameter tests
+
+def test_anthropic_stop_sequences():
+ """Test stop_sequences parameter"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 100,
+ "stop_sequences": ["\n", "END"],
+ "messages": [
+ {"role": "user", "content": "Count to 10"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_temperature():
+ """Test temperature parameter"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "temperature": 0.5,
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_top_p():
+ """Test top_p parameter"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "top_p": 0.9,
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_top_k():
+ """Test top_k parameter (llama.cpp specific)"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "top_k": 40,
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+# Error handling tests
+
+def test_anthropic_missing_messages():
+ """Test error when messages are missing"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50
+ # missing "messages" field
+ })
+
+ # Should return an error (400 or 500)
+ assert res.status_code >= 400
+
+
+def test_anthropic_empty_messages():
+ """Test permissive handling of empty messages array"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": []
+ })
+
+ # Server is permissive and accepts empty messages (provides defaults)
+ # This matches the permissive validation design choice
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+# Content block index tests
+
+def test_anthropic_streaming_content_block_indices():
+ """Test that content block indices are correct in streaming"""
+ server.jinja = True
+ server.start()
+
+ # Request that might produce both text and tool use
+ res = server.make_stream_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 200,
+ "stream": True,
+ "tools": [{
+ "name": "test_tool",
+ "description": "A test tool",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "param": {"type": "string"}
+ },
+ "required": ["param"]
+ }
+ }],
+ "messages": [
+ {"role": "user", "content": "Use the test tool"}
+ ]
+ })
+
+ events = []
+ for data in res:
+ events.append(data)
+
+ # Check content_block_start events have sequential indices
+ block_starts = [e for e in events if e.get("type") == "content_block_start"]
+ if len(block_starts) > 1:
+ # If there are multiple blocks, indices should be sequential
+ indices = [e["index"] for e in block_starts]
+ expected_indices = list(range(len(block_starts)))
+ assert indices == expected_indices, f"Expected indices {expected_indices}, got {indices}"
+
+ # Check content_block_stop events match the starts
+ block_stops = [e for e in events if e.get("type") == "content_block_stop"]
+ start_indices = set(e["index"] for e in block_starts)
+ stop_indices = set(e["index"] for e in block_stops)
+ assert start_indices == stop_indices, "content_block_stop indices should match content_block_start indices"
+
+
+# Extended features tests
+
+def test_anthropic_thinking():
+ """Test extended thinking parameter"""
+ server.jinja = True
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 100,
+ "thinking": {
+ "type": "enabled",
+ "budget_tokens": 50
+ },
+ "messages": [
+ {"role": "user", "content": "What is 2+2?"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+def test_anthropic_metadata():
+ """Test metadata parameter"""
+ server.start()
+
+ res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "metadata": {
+ "user_id": "test_user_123"
+ },
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert res.status_code == 200
+ assert res.body["type"] == "message"
+
+
+# Compatibility tests
+
+def test_anthropic_vs_openai_different_response_format():
+ """Verify Anthropic format is different from OpenAI format"""
+ server.start()
+
+ # Make OpenAI request
+ openai_res = server.make_request("POST", "/v1/chat/completions", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ # Make Anthropic request
+ anthropic_res = server.make_request("POST", "/v1/messages", data={
+ "model": "test",
+ "max_tokens": 50,
+ "messages": [
+ {"role": "user", "content": "Hello"}
+ ]
+ })
+
+ assert openai_res.status_code == 200
+ assert anthropic_res.status_code == 200
+
+ # OpenAI has "object", Anthropic has "type"
+ assert "object" in openai_res.body
+ assert "type" in anthropic_res.body
+ assert openai_res.body["object"] == "chat.completion"
+ assert anthropic_res.body["type"] == "message"
+
+ # OpenAI has "choices", Anthropic has "content"
+ assert "choices" in openai_res.body
+ assert "content" in anthropic_res.body
+
+ # Different usage field names
+ assert "prompt_tokens" in openai_res.body["usage"]
+ assert "input_tokens" in anthropic_res.body["usage"]
+ assert "completion_tokens" in openai_res.body["usage"]
+ assert "output_tokens" in anthropic_res.body["usage"]
assert "content" in res.body
+def test_correct_api_key_anthropic_header():
+ global server
+ server.start()
+ res = server.make_request("POST", "/completions", data={
+ "prompt": "I believe the meaning of life is",
+ }, headers={
+ "X-Api-Key": TEST_API_KEY,
+ })
+ assert res.status_code == 200
+ assert "error" not in res.body
+ assert "content" in res.body
+
+
def test_openai_library_correct_api_key():
global server
server.start()