GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
- GGML_UNARY_OP_RELU,
GGML_UNARY_OP_SIGMOID,
GGML_UNARY_OP_GELU,
+ GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
+ GGML_UNARY_OP_RELU,
GGML_UNARY_OP_COUNT,
};
struct ggml_context * ctx,
struct ggml_tensor * a);
+ // GELU using erf (error function) when possible
+ // some backends may fallback to approximation based on Abramowitz and Stegun formula
+ GGML_API struct ggml_tensor * ggml_gelu_erf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
+ GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a);
+
GGML_API struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
} break;
case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
{
}
}
+// ggml_compute_forward_gelu_erf
+
+static void ggml_compute_forward_gelu_erf_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_erf_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ GGML_UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_erf_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_erf_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ const float v = GGML_FP16_TO_FP32(x);
+ GGML_UNUSED(v);
+ assert(!isnan(v));
+ assert(!isinf(v));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_erf(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_erf_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_gelu_erf_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
// ggml_compute_forward_gelu_quick
static void ggml_compute_forward_gelu_quick_f32(
{
ggml_compute_forward_gelu(params, dst);
} break;
+ case GGML_UNARY_OP_GELU_ERF:
+ {
+ ggml_compute_forward_gelu_erf(params, dst);
+ } break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, dst);
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+static const float SQRT_2_INV = 0.70710678118654752440084436210484f;
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
}
+inline static void ggml_vec_gelu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+ for (int i = 0; i < n; ++i) {
+ float xi = GGML_FP16_TO_FP32(x[i]);
+ float res = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
+ y[i] = GGML_FP32_TO_FP16(res);
+ }
+}
+
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
}
#endif
+inline static void ggml_vec_gelu_erf_f32(const int n, float * y, const float * x) {
+ for (int i = 0; i < n; ++i) {
+ float xi = x[i];
+ y[i] = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
+ }
+}
+
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
GGML_METAL_KERNEL_TYPE_SIGMOID,
GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_4,
+ GGML_METAL_KERNEL_TYPE_GELU_ERF,
+ GGML_METAL_KERNEL_TYPE_GELU_ERF_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF, gelu_erf, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF_4, gelu_erf_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
+ case GGML_UNARY_OP_GELU_ERF:
+ {
+ int64_t n = ggml_nelements(dst);
+
+ id<MTLComputePipelineState> pipeline = nil;
+
+ if (n % 4 == 0) {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF_4].pipeline;
+ n /= 4;
+ } else {
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF].pipeline;
+ }
+
+ [encoder setComputePipelineState:pipeline];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ } break;
case GGML_UNARY_OP_GELU_QUICK:
{
int64_t n = ggml_nelements(dst);
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+constant float SQRT_2_INV = 0.70710678118654752440084436210484f;
kernel void kernel_gelu(
device const float * src0,
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
+// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
+// ref: https://www.johndcook.com/blog/python_erf/
+constant float p_erf = 0.3275911f;
+constant float a1_erf = 0.254829592f;
+constant float a2_erf = -0.284496736f;
+constant float a3_erf = 1.421413741f;
+constant float a4_erf = -1.453152027f;
+constant float a5_erf = 1.061405429f;
+
+template<typename T>
+T erf_approx(T x) {
+ T sign_x = sign(x);
+ x = fabs(x);
+ T t = 1.0f / (1.0f + p_erf * x);
+ T y = 1.0f - (((((a5_erf * t + a4_erf) * t) + a3_erf) * t + a2_erf) * t + a1_erf) * t * exp(-x * x);
+ return sign_x * y;
+}
+
+kernel void kernel_gelu_erf(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float & x = src0[tpig];
+
+ dst[tpig] = 0.5f*x*(1.0f+erf_approx<float>(x*SQRT_2_INV));
+}
+
+kernel void kernel_gelu_erf_4(
+ device const float4 * src0,
+ device float4 * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ device const float4 & x = src0[tpig];
+
+ dst[tpig] = 0.5f*x*(1.0f+erf_approx<float4>(x*SQRT_2_INV));
+}
+
kernel void kernel_silu(
device const float * src0,
device float * dst,
"HARDSWISH",
"HARDSIGMOID",
"EXP",
+ "GELU_ERF",
};
-static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
+static_assert(GGML_UNARY_OP_COUNT == 15, "GGML_UNARY_OP_COUNT != 15");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
}
+// ggml_gelu_erf
+
+struct ggml_tensor * ggml_gelu_erf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_ERF);
+}
+
+struct ggml_tensor * ggml_gelu_erf_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_ERF);
+}
+
// ggml_gelu_quick
struct ggml_tensor * ggml_gelu_quick(