if (need_timestamp) {
// at the end of the 30-second audio segment, we start giving preference to time tokens
for (int i = 0; i < top_k; i++) {
- if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > probs_id[0].first*0.1) {
+ if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) {
return probs_id[i].second;
}
}
return probs_id[0].second;
}
+// naive Discrete Fourier Transform
+// input is real-valued
+// output is complex-valued
+void dft(const std::vector<float> & in, std::vector<float> & out) {
+ int N = in.size();
+
+ out.resize(N*2);
+
+ for (int k = 0; k < N; k++) {
+ float re = 0;
+ float im = 0;
+
+ for (int n = 0; n < N; n++) {
+ float angle = 2*M_PI*k*n/N;
+ re += in[n]*cos(angle);
+ im -= in[n]*sin(angle);
+ }
+
+ out[k*2 + 0] = re;
+ out[k*2 + 1] = im;
+ }
+}
+
// Cooley-Tukey FFT
-// poor man's implmentation - use something better
+// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
void fft(const std::vector<float> & in, std::vector<float> & out) {
return;
}
+ if (N%2 == 1) {
+ dft(in, out);
+ return;
+ }
+
std::vector<float> even;
std::vector<float> odd;
// FFT -> mag^2
fft(fft_in, fft_out);
- for (int j = 0; j < n_fft; j++) {
+ for (int j = 0; j < fft_size; j++) {
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
}
+ for (int j = 1; j < fft_size/2; j++) {
+ //if (i == 0) {
+ // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
+ //}
+ fft_out[j] += fft_out[fft_size - j];
+ }
+ if (i == 0) {
+ //for (int j = 0; j < fft_size; j++) {
+ // printf("%d: %e\n", j, fft_out[j]);
+ //}
+ }
// mel spectrogram
for (int j = 0; j < mel.n_mel; j++) {
mmax = mel.data[i];
}
}
+ //printf("%s: max = %f\n", __func__, mmax);
mmax -= 8.0;
return 2;
}
- if (wav.channels != 1) {
- fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
+ if (wav.channels != 1 && wav.channels != 2) {
+ fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], params.fname_inp.c_str());
return 3;
}
return 5;
}
+ int n = wav.totalPCMFrameCount;
+
std::vector<int16_t> pcm16;
- pcm16.resize(wav.totalPCMFrameCount);
- drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data());
+ pcm16.resize(n*wav.channels);
+ drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
- // convert to float
- pcmf32.resize(pcm16.size());
- for (size_t i = 0; i < pcm16.size(); i++) {
- pcmf32[i] = float(pcm16[i])/32768.0f;
+ // convert to mono, float
+ pcmf32.resize(n);
+ if (wav.channels == 1) {
+ for (size_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[i])/32768.0f;
+ }
+ } else {
+ for (size_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
+ }
}
}
}
// the generated text including timestamps
- std::vector<whisper_result> result_all;
+ //std::vector<whisper_result> result_all;
// main loop
int seek = 0;
int result_len = 0;
std::vector<whisper_result> result_cur;
- for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) {
+ for (int i = 0; i < model.hparams.n_text_ctx/2 - 4; ++i) {
// decode
if (prompt.size() > 0) {
const int64_t t_start_us = ggml_time_us();
}
result_cur.resize(result_len);
- result_all.insert(result_all.end(), result_cur.begin(), result_cur.end());
+ //result_all.insert(result_all.end(), result_cur.begin(), result_cur.end());
for (const auto & r : result_cur) {
prompt_past.push_back(r.id);