def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
+ architectures = hparams.get("architectures")
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
+ if architectures is not None:
+ # preserve "architectures" from root level config
+ hparams["architectures"] = architectures
return hparams
@classmethod
class VisionModel(ModelBase):
model_arch = gguf.MODEL_ARCH.CLIP_VISION
n_text_embd = 0
+ preprocessor_config: dict[str, Any]
+ global_config: dict[str, Any]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if "vision_config" not in self.hparams:
raise ValueError("vision_config not found in hparams")
- # move vision config to the top level
+ # move vision config to the top level, while preserving the original hparams in global_config
+ self.global_config = self.hparams
self.hparams = self.hparams["vision_config"]
+ # load preprocessor config
+ with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
+ self.preprocessor_config = json.load(f)
+
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
def set_gguf_parameters(self):
self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.PROJECTION_DIM, self.n_embd_text)
- self.gguf_writer.add_bool(gguf.Keys.ClipVision.HAS_VISION_ENCODER, True)
+ self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
+ self.gguf_writer.add_vision_has_vision_encoder(True)
# vision config
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.IMAGE_SIZE, self.find_hparam(["image_size"]))
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.PATCH_SIZE, self.find_hparam(["patch_size"]))
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.EMBEDDING_LENGTH, self.find_hparam(["hidden_size"]))
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.FEED_FORWARD_LENGTH, self.find_hparam(["intermediate_size"]))
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.BLOCK_COUNT, self.find_hparam(["num_hidden_layers"]))
- self.gguf_writer.add_uint32(gguf.Keys.ClipVision.Attention.HEAD_COUNT, self.find_hparam(["num_attention_heads"]))
+ self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
+ self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
+ self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
+ self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
+ self.gguf_writer.add_vision_block_count(self.find_hparam(["num_hidden_layers"]))
+ self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
+
+ # preprocessor config
+ self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
+ self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_mean"])
def write_vocab(self):
raise ValueError("VisionModel does not support vocab writing")
raise ValueError(f"Unprocessed norms: {norms}")
-@ModelBase.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
+@ModelBase.register(
+ "LLaMAForCausalLM",
+ "LlamaForCausalLM",
+ "MistralForCausalLM",
+ "MixtralForCausalLM",
+ "Idefics3ForConditionalGeneration",
+ "SmolVLMForConditionalGeneration")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ # fix for SmolVLM2, missing `num_attention_heads` in config.json
+ if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
+ self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
+
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
+ is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
+
+ if is_vision_tensor:
+ return [] # skip vision tensors
+ elif name.startswith("model.text_model"):
+ name = name.replace("text_model.", "") # for SmolVLM
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
raise ValueError(f"Unprocessed experts: {experts}")
+@ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
+class SmolVLMModel(VisionModel):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ # fix for SmolVLM2, missing some keys in config.json
+ # default values are taken from transformers code
+ if self.hparams["model_type"] == "smolvlm_vision":
+ self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
+ self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
+ self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
+ self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
+ self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
+ self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
+ self.gguf_writer.add_vision_use_gelu(True)
+
+ def tensor_force_quant(self, name, new_name, bid, n_dims):
+ del bid, new_name, n_dims # unused
+ if ".embeddings." in name:
+ return gguf.GGMLQuantizationType.F32
+ return False
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ del bid # unused
+ is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
+
+ if is_vision_tensor:
+ return [(self.map_tensor_name(name), data_torch)]
+
+ return [] # skip other tensors
+
+
@ModelBase.register("Llama4ForConditionalGeneration")
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
- self.gguf_writer.add_string(gguf.Keys.ClipVision.PROJECTOR_TYPE, "gemma3")
+ self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
# default values below are taken from HF tranformers code
- self.gguf_writer.add_float32(gguf.Keys.ClipVision.Attention.LAYERNORM_EPS, hparams.get("layer_norm_eps", 1e-6))
- self.gguf_writer.add_array(gguf.Keys.ClipVision.IMAGE_MEAN, [0.5, 0.5, 0.5])
- self.gguf_writer.add_array(gguf.Keys.ClipVision.IMAGE_STD, [0.5, 0.5, 0.5])
- self.gguf_writer.add_bool (gguf.Keys.ClipVision.USE_GELU, True)
+ self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
+ self.gguf_writer.add_vision_use_gelu(True)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
# process vision tensors
name = name.replace("_weight", ".weight")
- if "fc1" in name:
- name = name.replace("fc1", "fc2")
- else:
- name = name.replace("fc2", "fc1")
# correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
# the other norm values are part of SigLIP model, and they are already correct
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
-#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
-#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
+#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
+#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
+#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_GEMMA3,
+ PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_UNKNOWN,
};
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
+ { PROJECTOR_TYPE_IDEFICS3, "idefics3"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
+ int32_t proj_scale_factor = 0; // idefics3
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
embeddings = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
embeddings);
+
+ } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
+ // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
+
+ ggml_tensor * cur = embeddings;
+ const int scale_factor = model.hparams.proj_scale_factor;
+ const int n_embd = cur->ne[0];
+ const int seq = cur->ne[1];
+ const int bsz = 1; // batch size, always 1 for now since we don't support batching
+ const int height = std::sqrt(seq);
+ const int width = std::sqrt(seq);
+ GGML_ASSERT(scale_factor != 0);
+ cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+ cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
+ n_embd * scale_factor * scale_factor,
+ height / scale_factor,
+ width / scale_factor,
+ bsz);
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
+ cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
+ n_embd * scale_factor * scale_factor,
+ seq / (scale_factor * scale_factor),
+ bsz);
+
+ cur = ggml_mul_mat(ctx0, model.projection, cur);
+ embeddings = cur;
+ } else {
+ GGML_ABORT("SigLIP: Unsupported projector type");
}
// build the graph
}
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- return clip_image_build_graph_siglip(ctx, imgs);
- } else {
- // TODO: we should have one build_* function per model
- return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
+ ggml_cgraph * res;
+ switch (ctx->proj_type) {
+ case PROJECTOR_TYPE_GEMMA3:
+ case PROJECTOR_TYPE_IDEFICS3:
+ {
+ res = clip_image_build_graph_siglip(ctx, imgs);
+ } break;
+ default:
+ {
+ // TODO: we should have one build_* function per model
+ res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
+ } break;
}
+ return res;
}
struct clip_model_loader {
}
void load_hparams() {
+ auto & hparams = ctx_clip.vision_model.hparams;
+
// projector type
{
std::string proj_type;
get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
- auto & hparams = ctx_clip.vision_model.hparams;
get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size);
get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head);
get_u32(string_format(KEY_N_FF, "vision"), hparams.n_intermediate);
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
}
+
+ // model-specific params
+ switch (ctx_clip.proj_type) {
+ case PROJECTOR_TYPE_IDEFICS3:
+ {
+ get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
+ } break;
+ default:
+ break;
+ }
}
void load_tensors() {
vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
} break;
+ case PROJECTOR_TYPE_IDEFICS3:
+ {
+ vision_model.projection = get_tensor(TN_MM_PROJECTOR);
+ } break;
default:
GGML_ASSERT(false && "unknown projector type");
}
return true;
}
- if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
+ if (ctx->has_glm_projector
+ || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
+ || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
clip_image_u8 resized_image;
int sz = params.image_size;
- image_manipulation::bicubic_resize(*img, resized_image, sz, sz);
+ image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
n_patches = x_patch * y_patch;
} else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
n_patches = 256;
+ } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
+ n_patches /= ctx->vision_model.hparams.proj_scale_factor;
}
return n_patches;
else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
// do nothing
}
+ else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
+ // do nothing
+ }
else {
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
}
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
- return ctx->vision_model.mm_model_peg_0_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- return ctx->vision_model.mm_3_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- if (ctx->minicpmv_version == 2) {
- return 4096;
- }
- else if (ctx->minicpmv_version == 3) {
- return 3584;
- }
- else if (ctx->minicpmv_version == 4) {
- return 3584;
- }
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
- return ctx->vision_model.mm_model_mlp_3_w->ne[1];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
- return ctx->vision_model.mm_1_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- return ctx->vision_model.mm_input_proj_w->ne[0];
+ switch (ctx->proj_type) {
+ case PROJECTOR_TYPE_LDP:
+ return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
+ case PROJECTOR_TYPE_LDPV2:
+ return ctx->vision_model.mm_model_peg_0_b->ne[0];
+ case PROJECTOR_TYPE_MLP:
+ return ctx->vision_model.mm_2_b->ne[0];
+ case PROJECTOR_TYPE_MLP_NORM:
+ return ctx->vision_model.mm_3_b->ne[0];
+ case PROJECTOR_TYPE_RESAMPLER:
+ if (ctx->minicpmv_version == 2) {
+ return 4096;
+ } else if (ctx->minicpmv_version == 3) {
+ return 3584;
+ } else if (ctx->minicpmv_version == 4) {
+ return 3584;
+ }
+ break; // Should not happen if version is valid
+ case PROJECTOR_TYPE_GLM_EDGE:
+ return ctx->vision_model.mm_model_mlp_3_w->ne[1];
+ case PROJECTOR_TYPE_MERGER:
+ return ctx->vision_model.mm_1_b->ne[0];
+ case PROJECTOR_TYPE_GEMMA3:
+ return ctx->vision_model.mm_input_proj_w->ne[0];
+ case PROJECTOR_TYPE_IDEFICS3:
+ return ctx->vision_model.projection->ne[1];
+ default:
+ break; // Fall through to throw
}
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
std::string prompt_modified(text.text);
std::string marker_modified(ctx->image_marker);
+ projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
+
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (clip_is_gemma3(ctx->ctx_clip)) {
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
+
+ } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
+ // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
+ marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
+ string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
arr_tmpl+=("$tmpl")
}
+add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
+add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
+add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek"
add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-mtmd-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
-# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K" # this model has broken chat template, not usable
+# these models always give the wrong answer, not sure why
+# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M"
+# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-256M-Instruct-GGUF:Q8_0"
+# add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF:Q8_0"
+
+# this model has broken chat template, not usable
+# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
###############
IMAGE_MEAN = "clip.vision.image_mean"
IMAGE_STD = "clip.vision.image_std"
USE_GELU = "clip.use_gelu"
+ USE_SILU = "clip.use_silu"
class Attention:
HEAD_COUNT = "clip.vision.attention.head_count"
LAYERNORM_EPS = "clip.vision.attention.layer_norm_epsilon"
+ class Projector:
+ SCALE_FACTOR = "clip.vision.projector.scale_factor"
+
#
# recommended mapping of model tensor names for storage in gguf
#
raise ValueError(f"Unknown type: {type(val)}")
+class VisionProjectorType:
+ GEMMA3 = "gemma3"
+ IDEFICS3 = "idefics3"
+
+
# Items here are (block size, type size)
QK_K = 256
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
def add_eom_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOM_ID, id)
+ # for vision models
+
+ def add_vision_projection_dim(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.PROJECTION_DIM, value)
+
+ def add_vision_has_vision_encoder(self, value: bool) -> None:
+ self.add_bool(Keys.ClipVision.HAS_VISION_ENCODER, value)
+
+ def add_vision_patch_size(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.PATCH_SIZE, value)
+
+ def add_vision_embedding_length(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.EMBEDDING_LENGTH, value)
+
+ def add_vision_feed_forward_length(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.FEED_FORWARD_LENGTH, value)
+
+ def add_vision_block_count(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.BLOCK_COUNT, value)
+
+ def add_vision_head_count(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.Attention.HEAD_COUNT, value)
+
+ def add_vision_projector_type(self, value: str) -> None:
+ self.add_string(Keys.ClipVision.PROJECTOR_TYPE, value)
+
+ def add_vision_attention_layernorm_eps(self, value: float) -> None:
+ self.add_float32(Keys.ClipVision.Attention.LAYERNORM_EPS, value)
+
+ def add_vision_image_size(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.IMAGE_SIZE, value)
+
+ def add_vision_image_mean(self, values: Sequence[float]) -> None:
+ self.add_array(Keys.ClipVision.IMAGE_MEAN, values)
+
+ def add_vision_image_std(self, values: Sequence[float]) -> None:
+ self.add_array(Keys.ClipVision.IMAGE_STD, values)
+
+ def add_vision_use_gelu(self, value: bool) -> None:
+ self.add_bool(Keys.ClipVision.USE_GELU, value)
+
+ def add_vision_use_silu(self, value: bool) -> None:
+ self.add_bool(Keys.ClipVision.USE_SILU, value)
+
+ def add_vision_projector_scale_factor(self, value: int) -> None:
+ self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
+
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = ''
if not skip_pack_prefix:
MODEL_TENSOR.V_ENC_FFN_UP: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
"vpm.encoder.layers.{bid}.mlp.fc1",
- "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM
+ "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
),
MODEL_TENSOR.V_ENC_FFN_DOWN: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
"vpm.encoder.layers.{bid}.mlp.fc2",
- "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM
+ "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
),
MODEL_TENSOR.V_PRE_NORM: (
{ "yandex", LLM_CHAT_TEMPLATE_YANDEX },
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
+ { "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
- : LLM_CHAT_TEMPLATE_CHATML;
+ : tmpl_contains("<end_of_utterance>")
+ ? LLM_CHAT_TEMPLATE_SMOLVLM // SmolVLM uses <|im_start|> as BOS, but it is NOT chatml
+ : LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
if (add_ass) {
ss << "<|header_start|>assistant<|header_end|>\n\n";
}
- } else {
+ } else if (tmpl == LLM_CHAT_TEMPLATE_SMOLVLM) {
+ // SmolVLM
+ ss << "<|im_start|>"; // uses <|im_start|> as BOS, but the actual content is NOT chatml
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "\n\n";
+ } else if (role == "user") {
+ ss << "User: " << message->content << "<end_of_utterance>\n";
+ } else {
+ ss << "Assistant: " << message->content << "<end_of_utterance>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "Assistant:";
+ }
+ } else {
// template not supported
return -1;
}
LLM_CHAT_TEMPLATE_YANDEX,
LLM_CHAT_TEMPLATE_BAILING,
LLM_CHAT_TEMPLATE_LLAMA4,
+ LLM_CHAT_TEMPLATE_SMOLVLM,
LLM_CHAT_TEMPLATE_UNKNOWN,
};