import json
import numpy as np
import torch
+import argparse
from typing import Any, List
from pathlib import Path
bs.append(b)
cs.append(2**8+n)
n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
+ return dict(zip(bs, (chr(n) for n in cs)))
-def count_model_parts(dir_model: str) -> int:
+def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
return num_parts
-if len(sys.argv) < 3:
- print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+args = parse_args()
-# output in the same directory as the model
-dir_model = sys.argv[1]
-last_dir = os.path.basename(os.path.normpath(dir_model))
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# map from ftype to string
ftype_str = ["f32", "f16"]
-ftype = 1
-if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
-
- sys.exit(1)
-
-fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-print("gguf: loading model "+last_dir)
+print("gguf: loading model "+dir_model.name)
-with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "RWForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit()
+ sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
print("gguf: get tokenizer metadata")
-tokens: List[str] = []
+tokens: List[bytearray] = []
scores: List[float] = []
toktypes: List[int] = []
-merges: List[str] = []
-
-
-if Path(dir_model + "/tokenizer.json").is_file():
- # gpt2 tokenizer
- gguf_writer.add_tokenizer_model("gpt2")
- print("gguf: get gpt2 tokenizer merges")
-
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- merges = tokenizer_json["model"]["merges"]
-
- gguf_writer.add_token_merges(merges)
-
- print("gguf: get gpt2 tokenizer vocab")
-
- vocab_size = len(tokenizer_json["model"]["vocab"])
-
- # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
- reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
+tokenizer_json_file = dir_model / 'tokenizer.json'
+if not tokenizer_json_file.is_file():
+ print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
+ sys.exit(1)
- for i in range(vocab_size):
- if i in reverse_vocab:
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode('utf-8'))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
+# gpt2 tokenizer
+gguf_writer.add_tokenizer_model("gpt2")
- tokens.append(text)
- scores.append(0.0) # dymmy
- toktypes.append(gguf.TokenType.NORMAL) # dummy
+with open(tokenizer_json_file, "r", encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
+print("gguf: get gpt2 tokenizer vocab")
-print("gguf: get special token ids")
-# Look for special tokens in config.json
+vocab_size = len(tokenizer_json["model"]["vocab"])
-if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
- gguf_writer.add_bos_token_id(hparams["bos_token_id"])
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
-if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
- gguf_writer.add_eos_token_id(hparams["eos_token_id"])
+reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v: k for k, v in byte_encoder.items()}
-if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
- gguf_writer.add_unk_token_id(hparams["unk_token_id"])
+for i in range(vocab_size):
+ if i in reverse_vocab:
+ try:
+ text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
+ except KeyError:
+ text = bytearray()
+ for c in reverse_vocab[i]:
+ if ord(c) < 256: # single byte character
+ text.append(byte_decoder[ord(c)])
+ else: # multibyte special token character
+ text.extend(c.encode('utf-8'))
+ else:
+ print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
+ pad_token = f"[PAD{i}]".encode("utf8")
+ text = bytearray(pad_token)
-if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
- gguf_writer.add_sep_token_id(hparams["sep_token_id"])
+ tokens.append(text)
+ scores.append(0.0) # dymmy
+ toktypes.append(gguf.TokenType.NORMAL) # dummy
-if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
- gguf_writer.add_pad_token_id(hparams["pad_token_id"])
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
+special_vocab.add_to_gguf(gguf_writer)
# TENSORS
print("gguf: get tensor metadata")
if num_parts == 0:
- part_names = ("pytorch_model.bin",)
+ part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
+ if args.vocab_only:
+ break
print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
+ model_part = torch.load(dir_model / part_name, map_location="cpu")
for name in model_part.keys():
data = model_part[name]
data = data.squeeze().numpy()
# map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
+ gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
-print("gguf: write tensors")
-gguf_writer.write_tensors_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
gguf_writer.close()
-print("gguf: model successfully exported to '" + fname_out + "'")
+print(f"gguf: model successfully exported to '{fname_out}'")
print("")
import json
import numpy as np
import torch
+import argparse
from typing import Any, List
from pathlib import Path
bs.append(b)
cs.append(2**8+n)
n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
+ return dict(zip(bs, (chr(n) for n in cs)))
-def count_model_parts(dir_model: str) -> int:
+def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
return num_parts
-if len(sys.argv) < 3:
- print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+args = parse_args()
-# output in the same directory as the model
-dir_model = sys.argv[1]
-last_dir = os.path.basename(os.path.normpath(dir_model))
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# map from ftype to string
ftype_str = ["f32", "f16"]
-ftype = 1
-if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
-
- sys.exit(1)
-
-fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-print("gguf: loading model "+last_dir)
+print("gguf: loading model "+dir_model.name)
-with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
block_count = hparams["num_hidden_layers"]
-gguf_writer.add_name(last_dir)
+gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
print("gguf: get tokenizer metadata")
-tokens: List[str] = []
-merges: List[str] = []
-
-
-if Path(dir_model + "/tokenizer.json").is_file():
- # gpt2 tokenizer
- gguf_writer.add_tokenizer_model("gpt2")
-
- print("gguf: get gpt2 tokenizer merges")
+tokens: List[bytearray] = []
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- merges = tokenizer_json["model"]["merges"]
-
- gguf_writer.add_token_merges(merges)
-
- print("gguf: get gpt2 tokenizer vocab")
-
- vocab_size = len(tokenizer_json["model"]["vocab"])
-
- # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
- reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
-
- for i in range(vocab_size):
- if i in reverse_vocab:
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode('utf-8'))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
-
- tokens.append(text)
+tokenizer_json_file = dir_model / 'tokenizer.json'
+if not tokenizer_json_file.is_file():
+ print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
+ sys.exit(1)
- gguf_writer.add_token_list(tokens)
+# gpt2 tokenizer
+gguf_writer.add_tokenizer_model("gpt2")
- if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
- print("gguf: get special token ids")
+with open(tokenizer_json_file, "r", encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
- with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_config = json.load(f)
+print("gguf: get gpt2 tokenizer vocab")
- # find special token ids
+vocab_size = len(tokenizer_json["model"]["vocab"])
- if "bos_token" in tokenizer_config:
- for key in tokenizer_json["added_tokens"]:
- if key["content"] == tokenizer_config["bos_token"]:
- gguf_writer.add_bos_token_id(key["id"])
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
- if "eos_token" in tokenizer_config:
- for key in tokenizer_json["added_tokens"]:
- if key["content"] == tokenizer_config["eos_token"]:
- gguf_writer.add_eos_token_id(key["id"])
+reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v: k for k, v in byte_encoder.items()}
- if "unk_token" in tokenizer_config:
- for key in tokenizer_json["added_tokens"]:
- if key["content"] == tokenizer_config["unk_token"]:
- gguf_writer.add_unk_token_id(key["id"])
+for i in range(vocab_size):
+ if i in reverse_vocab:
+ try:
+ text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
+ except KeyError:
+ text = bytearray()
+ for c in reverse_vocab[i]:
+ if ord(c) < 256: # single byte character
+ text.append(byte_decoder[ord(c)])
+ else: # multibyte special token character
+ text.extend(c.encode('utf-8'))
+ else:
+ print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
+ pad_token = f"[PAD{i}]".encode("utf8")
+ text = bytearray(pad_token)
- if "sep_token" in tokenizer_config:
- for key in tokenizer_json["added_tokens"]:
- if key["content"] == tokenizer_config["sep_token"]:
- gguf_writer.add_sep_token_id(key["id"])
+ tokens.append(text)
- if "pad_token" in tokenizer_config:
- for key in tokenizer_json["added_tokens"]:
- if key["content"] == tokenizer_config["pad_token"]:
- gguf_writer.add_pad_token_id(key["id"])
+gguf_writer.add_token_list(tokens)
+special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
+special_vocab.add_to_gguf(gguf_writer)
# TENSORS
print("gguf: get tensor metadata")
if num_parts == 0:
- part_names = ("pytorch_model.bin",)
+ part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
+ if args.vocab_only:
+ break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
data = data.squeeze().numpy()
# map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
+ gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
-print("gguf: write tensors")
-gguf_writer.write_tensors_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
gguf_writer.close()
-print("gguf: model successfully exported to '" + fname_out + "'")
+print(f"gguf: model successfully exported to '{fname_out}'")
print("")
import json
import numpy as np
import torch
+import argparse
-from typing import Any, List
+from typing import Any, List, TypeAlias
from pathlib import Path
from sentencepiece import SentencePieceProcessor
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
-def count_model_parts(dir_model: str) -> int:
+def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("consolidated."):
return num_parts
-if len(sys.argv) < 3:
- print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
-
- sys.exit(1)
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+args = parse_args()
-# output in the same directory as the model
-dir_model = sys.argv[1]
-last_dir = os.path.basename(os.path.normpath(dir_model))
-
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# map from ftype to string
ftype_str = ["f32", "f16"]
-ftype = 1
-if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
-
- sys.exit(1)
-
-fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-print("gguf: loading model "+last_dir)
+print("gguf: loading model "+dir_model.name)
-with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
sys.exit()
-gguf_writer.add_name(last_dir)
+gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
scores: List[float] = []
toktypes: List[int] = []
-if Path(dir_model + "/tokenizer.model").is_file():
- # vocab type sentencepiece
- print("gguf: get sentencepiece tokenizer vocab and scores")
-
- tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
-
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
-
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
-
- toktype = 1 # defualt to normal token type
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
-
- # toktype = 4 is user-defined = tokens from added_tokens.json
-
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- if Path(dir_model + "/added_tokens.json").is_file():
- with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
- addtokens_json = json.load(f)
-
- print("gguf: get added tokens")
-
- for key in addtokens_json:
- tokens.append( key.encode("utf-8") )
- scores.append(-1000.0)
- toktypes.append(4) # user-defined token type
-
- gguf_writer.add_tokenizer_model("llama")
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
-
-
-print("gguf: get special token ids")
-
-if Path(dir_model + "/tokenizer.json").is_file():
- # Look for special tokens in tokenizer.json if it exists
-
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer = json.load(f)
+tokenizer_model_file = dir_model / 'tokenizer.model'
+if not tokenizer_model_file.is_file():
+ print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
+ sys.exit(1)
- if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
+# vocab type sentencepiece
+print("gguf: get sentencepiece tokenizer vocab and scores")
- with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_config = json.load(f)
+tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
- if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["bos_token"]["content"]:
- gguf_writer.add_bos_token_id(key["id"])
+for i in range(tokenizer.vocab_size()):
+ text: bytes
+ score: float
- if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["eos_token"]["content"]:
- gguf_writer.add_eos_token_id(key["id"])
+ piece = tokenizer.id_to_piece(i)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(i)
- if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["unk_token"]["content"]:
- gguf_writer.add_unk_token_id(key["id"])
+ toktype = 1 # defualt to normal token type
+ if tokenizer.is_unknown(i):
+ toktype = 2
+ if tokenizer.is_control(i):
+ toktype = 3
- if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["sep_token"]["content"]:
- gguf_writer.add_sep_token_id(key["id"])
+ # toktype = 4 is user-defined = tokens from added_tokens.json
- if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["pad_token"]["content"]:
- gguf_writer.add_pad_token_id(key["id"])
-else:
- # If no tokenizer.json: Look for special tokens in config.json
+ if tokenizer.is_unused(i):
+ toktype = 5
+ if tokenizer.is_byte(i):
+ toktype = 6
- if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
- gguf_writer.add_bos_token_id(hparams["bos_token_id"])
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
- if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
- gguf_writer.add_eos_token_id(hparams["eos_token_id"])
+added_tokens_file = dir_model / 'added_tokens.json'
+if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ addtokens_json = json.load(f)
- if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
- gguf_writer.add_unk_token_id(hparams["unk_token_id"])
+ print("gguf: get added tokens")
- if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
- gguf_writer.add_sep_token_id(hparams["sep_token_id"])
+ for key in addtokens_json:
+ tokens.append( key.encode("utf-8") )
+ scores.append(-1000.0)
+ toktypes.append(4) # user-defined token type
- if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
- gguf_writer.add_pad_token_id(hparams["pad_token_id"])
+gguf_writer.add_tokenizer_model("llama")
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+special_vocab = gguf.SpecialVocab(dir_model)
+special_vocab.add_to_gguf(gguf_writer)
# TENSORS
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
for part_name in part_names:
+ if args.vocab_only:
+ break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
data = data.squeeze().numpy()
# map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
+ gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
-print("gguf: write tensors")
-gguf_writer.write_tensors_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
gguf_writer.close()
-
-print("gguf: model successfully exported to '" + fname_out + "'")
+print(f"gguf: model successfully exported to '{fname_out}'")
print("")
self.dims = ()
self.dtype = None
self.start_offset = 0
- self.len_bytes = 0
+ self.len_bytes = np.int64(0)
def load(self, data, offset):
orig_offset = offset
return offset
class GGMLToGGUF:
- def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
+ def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
self.model = ggml_model
self.data = data
self.cfg = cfg
self.params_override = params_override
self.vocab_override = vocab_override
+ self.special_vocab = special_vocab
if params_override is not None:
n_kv_head = params_override.n_head_kv
else:
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
+ if self.special_vocab is not None:
+ self.special_vocab.add_to_gguf(gguf_writer)
self.add_tensors(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
gguf_writer.add_eos_token_id(2)
def add_tensors(self, gguf_writer):
- nm = self.name_map
+ tensor_map = self.name_map
data = self.data
print(f'* Adding {len(self.model.tensors)} tensor(s)')
for tensor in self.model.tensors:
name = str(tensor.name, 'UTF-8')
- if name.endswith('.weight'):
- name = name[:-7]
- suffix = '.weight'
- elif name.endswith('.bias'):
- name = name[:-5]
- suffix = '.bias'
- mapped_name = nm.get(name)
+ mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
assert mapped_name is not None, f'Bad name {name}'
- mapped_name += suffix
tempdims = list(tensor.dims[:])
if len(tempdims) > 1:
temp = tempdims[1]
else:
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
+ # FIXME: Respect cfg.vocab_dir?
+ svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab)
- return (params, vocab)
+ return (params, vocab, svocab)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
+ special_vocab = None
if cfg.model_metadata_dir is not None:
- (params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
+ (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
print(f'* Overriding params: {params_override}')
print(f'* Overriding vocab: {vocab_override}')
+ print(f'* Special vocab: {special_vocab}')
else:
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
- converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
+ converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
import json
import numpy as np
import torch
+import argparse
-from typing import Any, List, Optional
+from typing import Any, List, Optional, TypeAlias
from pathlib import Path
from sentencepiece import SentencePieceProcessor
return num_parts
-if len(sys.argv) < 3:
- print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
-
- sys.exit(1)
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
+ parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+ parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
+ parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
+ parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
+ return parser.parse_args()
+args = parse_args()
-# output in the same directory as the model
-dir_model = sys.argv[1]
-last_dir = os.path.basename(os.path.normpath(dir_model))
-
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file = sys.stderr)
+ sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
-
# map from ftype to string
ftype_str = ["f32", "f16"]
-ftype = 1
-if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
-
- sys.exit(1)
-
-fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-print("gguf: loading model "+last_dir)
+print("gguf: loading model "+dir_model.name)
-with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
sys.exit()
-gguf_writer.add_name(last_dir)
+gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
scores: List[float] = []
toktypes: List[int] = []
-if Path(dir_model + "/tokenizer.model").is_file():
- # vocab type sentencepiece
- print("gguf: get sentencepiece tokenizer vocab, scores and token types")
-
- tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
-
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
-
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
-
- toktype = 1 # defualt to normal token type
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
-
- # toktype = 4 is user-defined = tokens from added_tokens.json
-
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
-
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- if Path(dir_model + "/added_tokens.json").is_file():
- with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
- addtokens_json = json.load(f)
-
- print("gguf: get added tokens")
-
- for key in addtokens_json:
- tokens.append( key.encode("utf-8") )
- scores.append(-1000.0)
- toktypes.append(4) # user-defined token type
-
-
- gguf_writer.add_tokenizer_model("llama")
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
-
-
-print("gguf: get special token ids")
-
-if Path(dir_model + "/tokenizer.json").is_file():
- # Look for special tokens in tokenizer.json if it exists
+tokenizer_model_file = dir_model / 'tokenizer.model'
+if not tokenizer_model_file.is_file():
+ print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
+ sys.exit(1)
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer = json.load(f)
+# vocab type sentencepiece
+print("gguf: get sentencepiece tokenizer vocab, scores and token types")
- if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
+tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
- with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
- tokenizer_config = json.load(f)
+for i in range(tokenizer.vocab_size()):
+ text: bytes
+ score: float
- if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["bos_token"]["content"]:
- gguf_writer.add_bos_token_id(key["id"])
+ piece = tokenizer.id_to_piece(i)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(i)
- if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["eos_token"]["content"]:
- gguf_writer.add_eos_token_id(key["id"])
+ toktype = 1 # defualt to normal token type
+ if tokenizer.is_unknown(i):
+ toktype = 2
+ if tokenizer.is_control(i):
+ toktype = 3
- if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["unk_token"]["content"]:
- gguf_writer.add_unk_token_id(key["id"])
+ # toktype = 4 is user-defined = tokens from added_tokens.json
- if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["sep_token"]["content"]:
- gguf_writer.add_sep_token_id(key["id"])
+ if tokenizer.is_unused(i):
+ toktype = 5
+ if tokenizer.is_byte(i):
+ toktype = 6
- if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
- for key in tokenizer["added_tokens"]:
- if key["content"] == tokenizer_config["pad_token"]["content"]:
- gguf_writer.add_pad_token_id(key["id"])
-else:
- # If no tokenizer.json: Look for special tokens in config.json
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
- if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
- gguf_writer.add_bos_token_id(hparams["bos_token_id"])
+added_tokens_file = dir_model / 'added_tokens.json'
+if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ addtokens_json = json.load(f)
- if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
- gguf_writer.add_eos_token_id(hparams["eos_token_id"])
+ print("gguf: get added tokens")
- if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
- gguf_writer.add_unk_token_id(hparams["unk_token_id"])
+ for key in addtokens_json:
+ tokens.append( key.encode("utf-8") )
+ scores.append(-1000.0)
+ toktypes.append(4) # user-defined token type
- if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
- gguf_writer.add_sep_token_id(hparams["sep_token_id"])
- if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
- gguf_writer.add_pad_token_id(hparams["pad_token_id"])
+gguf_writer.add_tokenizer_model("llama")
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+special_vocab = gguf.SpecialVocab(dir_model)
+special_vocab.add_to_gguf(gguf_writer)
# TENSORS
print("gguf: get tensor metadata")
if num_parts == 0:
- part_names = ("pytorch_model.bin",)
+ part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
+ if args.vocab_only:
+ break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
data = reverse_hf_permute(data, head_count, head_count_kv)
# map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
+ new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+ if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+ print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
+ gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
-print("gguf: write tensors")
-gguf_writer.write_tensors_to_file()
+if not args.vocab_only:
+ print("gguf: write tensors")
+ gguf_writer.write_tensors_to_file()
gguf_writer.close()
-
-print("gguf: model successfully exported to '" + fname_out + "'")
+print(f"gguf: model successfully exported to '{fname_out}'")
print("")
import re
import struct
import sys
-from typing import Any, Dict, Sequence, TextIO
+from typing import Any, Dict, Sequence, BinaryIO
import numpy as np
import torch
sys.exit(1)
-def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
+def write_file_header(fout: BinaryIO, params: Dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", params["r"]))
def write_tensor_header(
- self, name: str, shape: Sequence[int], data_type: np.dtype
+ self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
) -> None:
sname = name.encode("utf-8")
fout.write(
from abc import ABCMeta, abstractmethod
from dataclasses import dataclass
from pathlib import Path
-from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, TypeVar, Union)
+from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Type, TypeVar, Union)
from sentencepiece import SentencePieceProcessor # type: ignore
if TYPE_CHECKING:
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
elif orig_config_path.exists():
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
- else:
+ elif model_plus.format != 'none':
params = Params.guessed(model_plus.model)
+ else:
+ raise ValueError('Cannot guess params when model format is none')
params.path_model = model_plus.paths[0].parent
yield from self.added_tokens()
def __repr__(self) -> str:
- return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
+ return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab:
Vocab = Union[BpeVocab, SentencePieceVocab]
-
#
# data loading
# TODO: reuse (probably move to gguf.py?)
@abstractmethod
def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ...
@abstractmethod
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': ...
@abstractmethod
def part(self, n_part: int) -> 'UnquantizedTensor': ...
@abstractmethod
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
-def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
+def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
fp32_arr = bf16_arr.astype(np.uint32) << 16
return fp32_arr.view(np.float32)
def to_ggml(self) -> 'UnquantizedTensor':
return self
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head))
+ return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def part(self, n_part: int) -> 'UnquantizedTensor':
r = self.ndarray.shape[0] // 3
class ModelPlus:
model: LazyModel
paths: List[Path] # Where this was read from.
- format: Literal['ggml', 'torch', 'safetensors']
+ format: Literal['ggml', 'torch', 'safetensors', 'none']
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
-def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
+def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
- return lazy_tensor.load().permute_part(n_part, n_head)
+ return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
+ return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
return LazyStorage(load=load, kind=pid[1], description=description)
- # @staticmethod
+ @staticmethod
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
# pyright: ignore[reportSelfClsParameterName]
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
description = f'pickled storage_offset={storage_offset} in {storage.description}'
return LazyTensor(load, list(size), storage.kind.data_type, description)
- # @staticmethod
+ @staticmethod
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
- CLASSES: Dict[Any, Any] = {
- ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
- ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
+ CLASSES: Dict[Tuple[str, str], Any] = {
+ # getattr used here as a workaround for mypy not being smart enough to detrmine
+ # the staticmethods have a __func__ attribute.
+ ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
+ ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
In = TypeVar('In')
Out = TypeVar('Out')
-def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, factory: Callable = ThreadPoolExecutor) -> Iterable[Out]:
+def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one
yield from map(func, iterable)
# Not reached.
iterable = iter(iterable)
- with factory(max_workers = max_workers) as executor:
+ executor_class: Union[Type[ThreadPoolExecutor], Type[ProcessPoolExecutor]]
+ if use_processpool_executor:
+ executor_class = ProcessPoolExecutor
+ else:
+ executor_class = ThreadPoolExecutor
+ with executor_class(max_workers = max_workers) as executor:
futures: List[concurrent.futures.Future[Out]] = []
done = False
for _ in range(concurrency):
scores.append(score)
toktypes.append(toktype)
- self.gguf.add_tokenizer_model("llama")
+ if isinstance(vocab, SentencePieceVocab):
+ self.gguf.add_tokenizer_model("llama")
+ elif isinstance(vocab, BpeVocab):
+ self.gguf.add_tokenizer_model("gpt2")
+ else:
+ raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes)
+ def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
+ svocab.add_to_gguf(self.gguf)
+
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = int(np.prod(tensor.shape))
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
self.gguf.close()
@staticmethod
- def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab) -> None:
+ def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
# meta data
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
+ of.add_meta_special_vocab(svocab)
+
of.write_meta()
of.close()
return dt.quantize(arr)
@staticmethod
- def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
+ def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
# meta data
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
+ of.add_meta_special_vocab(svocab)
# tensor info
for name, lazy_tensor in model.items():
# tensor data
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
- ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, factory = ProcessPoolExecutor)
+ ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
for (name, tensor) in model.items()}
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
- tmap = gguf.get_tensor_name_map(ARCH, params.n_layer)
+ tmap = gguf.TensorNameMap(ARCH, params.n_layer)
+ should_skip: Set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
tmp = model
#tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
print(f"Unpacking and permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
+ tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
+ tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
else:
out: LazyModel = {}
for name, lazy_tensor in model.items():
- name_new = name
-
- if name in tmap:
- name_new = tmap[name]
- elif name.endswith(".weight") and name[:-7] in tmap:
- name_new = tmap[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tmap:
- name_new = tmap[name[:-5]] + ".bias"
- else:
+ tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
+ if name_new is None:
raise Exception(f"Unexpected tensor name: {name}")
- if gguf.should_skip_tensor_TMP(ARCH, params.n_layer, name_new):
+ if tensor_type in should_skip:
print(f"skipping tensor {name_new}")
continue
- else:
- print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
- out[name_new] = lazy_tensor
+
+ print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
+ out[name_new] = lazy_tensor
return out
if args.dump_single:
model_plus = lazy_load_file(args.model)
do_dump_model(model_plus)
+ return
- model_plus = load_some_model(args.model)
+ if not args.vocab_only:
+ model_plus = load_some_model(args.model)
+ else:
+ model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
+
+ if args.dump:
+ do_dump_model(model_plus)
+ return
params = Params.load(model_plus)
if params.n_ctx == -1:
vocab: Vocab
if args.vocab_only:
- vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
assert args.outfile, "need --outfile if using --vocab-only"
+ # FIXME: Try to respect vocab_dir somehow?
+ vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
+ special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
outfile = args.outfile
- OutputFile.write_vocab_only(outfile, params, vocab)
+ OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
print(f"Wrote {outfile}")
- else:
- if args.dump:
- do_dump_model(model_plus)
- return
+ return
- if model_plus.vocab is not None and args.vocab_dir is None:
- vocab = model_plus.vocab
- else:
- vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
- vocab = load_vocab(vocab_dir, args.vocabtype)
-
- model = model_plus.model
- model = convert_model_names(model, params)
- ftype = pick_output_type(model, args.outtype)
- model = convert_to_output_type(model, ftype)
- outfile = args.outfile or default_outfile(model_plus.paths, ftype)
-
- params.ftype = ftype
- print(f"Writing {outfile}, format {ftype}")
-
- OutputFile.write_all(outfile, ftype, params, model, vocab, concurrency = args.concurrency)
- print(f"Wrote {outfile}")
+ if model_plus.vocab is not None and args.vocab_dir is None:
+ vocab = model_plus.vocab
+ else:
+ vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
+ vocab = load_vocab(vocab_dir, args.vocabtype)
+ # FIXME: Try to respect vocab_dir somehow?
+ special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
+
+ model = model_plus.model
+ model = convert_model_names(model, params)
+ ftype = pick_output_type(model, args.outtype)
+ model = convert_to_output_type(model, ftype)
+ outfile = args.outfile or default_outfile(model_plus.paths, ftype)
+
+ params.ftype = ftype
+ print(f"Writing {outfile}, format {ftype}")
+
+ OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
+ print(f"Wrote {outfile}")
if __name__ == '__main__':
import struct
import tempfile
import numpy as np
+import json
+import os
+from pathlib import Path
from enum import IntEnum, auto
-from typing import Any, IO, List, Optional
+from io import BufferedWriter
+from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union
#
# constants
class MODEL_ARCH(IntEnum):
- LLAMA = auto()
- FALCON = auto()
- GPT2 = auto()
- GPTJ = auto()
- GPTNEOX = auto()
- MPT = auto()
+ LLAMA : int = auto()
+ FALCON : int = auto()
+ GPT2 : int = auto()
+ GPTJ : int = auto()
+ GPTNEOX: int = auto()
+ MPT : int = auto()
class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_NORM = auto()
-
-
-MODEL_ARCH_NAMES = {
+ TOKEN_EMBD : int = auto()
+ POS_EMBD : int = auto()
+ OUTPUT : int = auto()
+ OUTPUT_NORM : int = auto()
+ ROPE_FREQS : int = auto()
+ ATTN_Q : int = auto()
+ ATTN_K : int = auto()
+ ATTN_V : int = auto()
+ ATTN_QKV : int = auto()
+ ATTN_OUT : int = auto()
+ ATTN_NORM : int = auto()
+ ATTN_NORM_2 : int = auto()
+ ATTN_ROT_EMBD: int = auto()
+ FFN_GATE : int = auto()
+ FFN_DOWN : int = auto()
+ FFN_UP : int = auto()
+ FFN_NORM : int = auto()
+
+
+MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.MPT: "mpt",
}
-MODEL_TENSOR_NAMES = {
+MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
}
# tensors that will not be serialized
-MODEL_TENSOR_SKIP = {
+MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
}
-# TODO: the following helper functions should be removed
-# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
-# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
-# REMOVE
-def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
- for skip in MODEL_TENSOR_SKIP.get(arch, []):
- for i in range(n_blocks):
- if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
- return True
-
- return False
-
-
-def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
- tensor_map = {}
-
- # Token embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
-
- tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
- tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
- tensor_map["transformer.word_embeddings"] = mapped_to # falcon
- tensor_map["model.embed_tokens"] = mapped_to # llama-hf
- tensor_map["tok_embeddings"] = mapped_to # llama-pth
-
- # Position embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
-
- tensor_map["transformer.wpe"] = mapped_to # gpt2
-
- # Output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
-
- tensor_map["embed_out"] = mapped_to # gptneox
- tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
- tensor_map["output"] = mapped_to # llama-pth
-
- # Output norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
-
- tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
- tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
- tensor_map["transformer.norm_f"] = mapped_to # mpt
- tensor_map["model.norm"] = mapped_to # llama-hf
- tensor_map["norm"] = mapped_to # llama-pth
-
- # Rope frequencies
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
-
- tensor_map["rope.freqs"] = mapped_to # llama-pth
-
- # Attention and feed-forward blocks
- for i in range(0, n_blocks):
+class TensorNameMap:
+ mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
+ # Token embeddings
+ MODEL_TENSOR.TOKEN_EMBD: (
+ "gpt_neox.embed_in", # gptneox
+ "transformer.wte", # gpt2 mpt
+ "transformer.word_embeddings", # falcon
+ "model.embed_tokens", # llama-hf
+ "tok_embeddings", # llama-pth
+ ),
+
+ # Position embeddings
+ MODEL_TENSOR.POS_EMBD: (
+ "transformer.wpe", # gpt2
+ ),
+
+ # Output
+ MODEL_TENSOR.OUTPUT: (
+ "embed_out", # gptneox
+ "lm_head", # gpt2 mpt falcon llama-hf
+ "output", # llama-pth
+ ),
+
+ # Output norm
+ MODEL_TENSOR.OUTPUT_NORM: (
+ "gpt_neox.final_layer_norm", # gptneox
+ "transformer.ln_f", # gpt2 falcon
+ "model.norm", # llama-hf
+ "norm", # llama-pth
+ ),
+
+ # Rope frequencies
+ MODEL_TENSOR.ROPE_FREQS: (
+ "rope.freqs", # llama-pth
+ ),
+ }
+
+ block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
# Attention norm
- # TODO: is there are simpler way to write these 2 lines in Python?
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to else None
-
- tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
- tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
- tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_NORM: (
+ "gpt_neox.layers.{bid}.input_layernorm", # gptneox
+ "transformer.h.{bid}.ln_1", # gpt2
+ "transformer.blocks.{bid}.norm_1", # mpt
+ "transformer.h.{bid}.input_layernorm", # falcon7b
+ "transformer.h.{bid}.ln_mlp", # falcon40b
+ "model.layers.{bid}.input_layernorm", # llama-hf
+ "layers.{bid}.attention_norm", # llama-pth
+ ),
# Attention norm 2
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
+ MODEL_TENSOR.ATTN_NORM_2: (
+ "transformer.h.{bid}.ln_attn", # falcon40b
+ ),
# Attention query-key-value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
+ MODEL_TENSOR.ATTN_QKV: (
+ "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
+ "transformer.h.{bid}.attn.c_attn", # gpt2
+ "transformer.blocks.{bid}.attn.Wqkv", # mpt
+ "transformer.h.{bid}.self_attention.query_key_value", # falcon
+ ),
# Attention query
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_Q: (
+ "model.layers.{bid}.self_attn.q_proj", # llama-hf
+ "layers.{bid}.attention.wq", # llama-pth
+ ),
# Attention key
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_K: (
+ "model.layers.{bid}.self_attn.k_proj", # llama-hf
+ "layers.{bid}.attention.wk", # llama-pth
+ ),
# Attention value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_V: (
+ "model.layers.{bid}.self_attn.v_proj", # llama-hf
+ "layers.{bid}.attention.wv", # llama-pth
+ ),
# Attention output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_OUT: (
+ "gpt_neox.layers.{bid}.attention.dense", # gptneox
+ "transformer.h.{bid}.attn.c_proj", # gpt2
+ "transformer.blocks.{bid}.attn.out_proj", # mpt
+ "transformer.h.{bid}.self_attention.dense", # falcon
+ "model.layers.{bid}.self_attn.o_proj", # llama-hf
+ "layers.{bid}.attention.wo", # llama-pth
+ ),
# Rotary embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
+ MODEL_TENSOR.ATTN_ROT_EMBD: (
+ "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
+ "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
+ ),
# Feed-forward norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
- tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
+ MODEL_TENSOR.FFN_NORM: (
+ "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
+ "transformer.h.{bid}.ln_2", # gpt2
+ "transformer.blocks.{bid}.norm_2", # mpt
+ "model.layers.{bid}.post_attention_layernorm", # llama-hf
+ "layers.{bid}.ffn_norm", # llama-pth
+ ),
# Feed-forward up
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
+ MODEL_TENSOR.FFN_UP: (
+ "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
+ "transformer.h.{bid}.mlp.c_fc", # gpt2
+ "transformer.blocks.{bid}.ffn.up_proj", # mpt
+ "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
+ "model.layers.{bid}.mlp.up_proj", # llama-hf
+ "layers.{bid}.feed_forward.w3", # llama-pth
+ ),
# Feed-forward gate
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
+ MODEL_TENSOR.FFN_GATE: (
+ "model.layers.{bid}.mlp.gate_proj", # llama-hf
+ "layers.{bid}.feed_forward.w1", # llama-pth
+ ),
# Feed-forward down
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
-
- return tensor_map
-
+ MODEL_TENSOR.FFN_DOWN: (
+ "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
+ "transformer.h.{bid}.mlp.c_proj", # gpt2
+ "transformer.blocks.{bid}.ffn.down_proj", # mpt
+ "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
+ "model.layers.{bid}.mlp.down_proj", # llama-hf
+ "layers.{bid}.feed_forward.w2", # llama-pth
+ ),
+ }
+
+ mapping: Dict[str, Tuple[MODEL_TENSOR, str]]
+
+ tensor_names: Dict[MODEL_TENSOR, str]
+
+ def __init__(self, arch: MODEL_ARCH, n_blocks: int):
+ mapping = self.mapping = {}
+ tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
+ for tensor, keys in self.mappings_cfg.items():
+ tensor_name = tensor_names.get(tensor)
+ if tensor_name is None:
+ continue
+ for key in keys:
+ mapping[key] = (tensor, tensor_name)
+ for bid in range(n_blocks):
+ for tensor, keys in self.block_mappings_cfg.items():
+ tensor_name = tensor_names.get(tensor)
+ if tensor_name is None:
+ continue
+ tensor_name = tensor_name.format(bid = bid)
+ for key in keys:
+ key = key.format(bid = bid)
+ mapping[key] = (tensor, tensor_name)
+
+ def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]:
+ result = self.mapping.get(key)
+ if result is not None:
+ return result
+ for suffix in try_suffixes:
+ if key.endswith(suffix):
+ result = self.mapping.get(key[:-len(suffix)])
+ if result is not None:
+ return (result[0], result[1] + suffix)
+ return None
+
+ def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]:
+ result = self.get_type_and_name(key, try_suffixes = try_suffixes)
+ if result is None:
+ return None
+ return result[1]
+
+ def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]:
+ result = self.get_type_and_name(key, try_suffixes = try_suffixes)
+ if result is None:
+ return None
+ return result[0]
+
+ def __getitem__(self, key: str) -> str:
+ try:
+ return self.mapping[key][1]
+ except KeyError:
+ raise KeyError(key)
+
+ def __contains__(self, key: str) -> bool:
+ return key in self.mapping
+
+ def __repr__(self) -> str:
+ return repr(self.mapping)
+
+def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
+ return TensorNameMap(arch, n_blocks)
class TokenType(IntEnum):
NORMAL = 1
class GGUFWriter:
- def __init__(self, path: str, arch: str, use_temp_file = True):
+ fout: BufferedWriter
+ arch: str
+ offset_tensor = 0
+ data_alignment = GGUF_DEFAULT_ALIGNMENT
+ kv_data = b""
+ kv_data_count = 0
+ ti_data = b""
+ ti_data_count = 0
+ use_temp_file: bool
+ temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None
+ tensors: List[Tuple[np.ndarray[Any, Any], int]]
+
+ def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True):
self.fout = open(path, "wb")
self.arch = arch
- self.offset_tensor = 0
- self.data_alignment = GGUF_DEFAULT_ALIGNMENT
- self.kv_data = b""
- self.kv_data_count = 0
- self.ti_data = b""
- self.ti_data_count = 0
self.add_architecture()
self.use_temp_file = use_temp_file
self.tensors = []
self.add_key(key)
self.add_val(val, GGUFValueType.STRING)
- def add_array(self, key: str, val: list):
- if not isinstance(val, list):
- raise ValueError("Value must be a list for array type")
+ def add_array(self, key: str, val: Sequence[Any]):
+ if not isinstance(val, Sequence):
+ raise ValueError("Value must be a sequence for array type")
self.add_key(key)
self.add_val(val, GGUFValueType.ARRAY)
- def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
+ _simple_value_packing = {
+ GGUFValueType.UINT8: "<B",
+ GGUFValueType.INT8: "<b",
+ GGUFValueType.UINT16: "<H",
+ GGUFValueType.INT16: "<h",
+ GGUFValueType.UINT32: "<I",
+ GGUFValueType.INT32: "<i",
+ GGUFValueType.FLOAT32: "<f",
+ GGUFValueType.UINT64: "<Q",
+ GGUFValueType.INT64: "<q",
+ GGUFValueType.FLOAT64: "<d",
+ GGUFValueType.BOOL: "?" ,
+ }
+ def add_val(self, val: Any, vtype: Optional[GGUFValueType] = None, add_vtype: bool = True):
if vtype is None:
vtype = GGUFValueType.get_type(val)
self.kv_data += struct.pack("<I", vtype)
self.kv_data_count += 1
- if vtype == GGUFValueType.UINT8:
- self.kv_data += struct.pack("<B", val)
- elif vtype == GGUFValueType.INT8:
- self.kv_data += struct.pack("<b", val)
- elif vtype == GGUFValueType.UINT16:
- self.kv_data += struct.pack("<H", val)
- elif vtype == GGUFValueType.INT16:
- self.kv_data += struct.pack("<h", val)
- elif vtype == GGUFValueType.UINT32:
- self.kv_data += struct.pack("<I", val)
- elif vtype == GGUFValueType.INT32:
- self.kv_data += struct.pack("<i", val)
- elif vtype == GGUFValueType.FLOAT32:
- self.kv_data += struct.pack("<f", val)
- elif vtype == GGUFValueType.UINT64:
- self.kv_data += struct.pack("<Q", val)
- elif vtype == GGUFValueType.INT64:
- self.kv_data += struct.pack("<q", val)
- elif vtype == GGUFValueType.FLOAT64:
- self.kv_data += struct.pack("<d", val)
- elif vtype == GGUFValueType.BOOL:
- self.kv_data += struct.pack("?", val)
+ pack_fmt = self._simple_value_packing.get(vtype)
+ if pack_fmt is not None:
+ self.kv_data += struct.pack(pack_fmt, val)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf8") if isinstance(val, str) else val
self.kv_data += struct.pack("<Q", len(encoded_val))
self.kv_data += encoded_val
- elif vtype == GGUFValueType.ARRAY:
- ltype = set([GGUFValueType.get_type(item) for item in val])
- assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
- self.kv_data += struct.pack("<I", list(ltype)[0])
+ elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
+ ltype = GGUFValueType.get_type(val[0])
+ if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
+ raise ValueError("All items in a GGUF array should be of the same type")
+ self.kv_data += struct.pack("<I", ltype)
self.kv_data += struct.pack("<Q", len(val))
for item in val:
self.add_val(item, add_vtype=False)
else:
- raise ValueError("Invalid GGUF metadata value type")
+ raise ValueError("Invalid GGUF metadata value type or value")
@staticmethod
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
- def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
+ def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8")
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
- def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
- if self.use_temp_file and not hasattr(self, "temp_file"):
- self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
- self.temp_file.seek(0)
+ def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
+ if self.use_temp_file and self.temp_file is None:
+ fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
+ fp.seek(0)
+ self.temp_file = fp
- self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
+ shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
+ self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if not self.use_temp_file:
+ if self.temp_file is None:
self.tensors.append((tensor, pad))
return
if pad != 0:
self.temp_file.write(bytes([0] * pad))
- def write_tensor_data(self, tensor: np.ndarray):
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
+ def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None):
+ pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
if pad != 0:
- self.fout.write(bytes([0] * pad))
+ fp.write(bytes([0] * pad))
+ def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
+ self.write_padding(self.fout, self.fout.tell())
tensor.tofile(self.fout)
-
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if pad != 0:
- self.fout.write(bytes([0] * pad))
+ self.write_padding(self.fout, tensor.nbytes)
def write_tensors_to_file(self):
self.write_ti_data_to_file()
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
- if pad != 0:
- self.fout.write(bytes([0] * pad))
+ self.write_padding(self.fout, self.fout.tell())
- if not self.use_temp_file:
+ if self.temp_file is None:
for (currtensor, currpad) in self.tensors:
currtensor.tofile(self.fout)
if currpad != 0:
self.add_bool(
KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
- def add_tensor_data_layout(self, layout: str):
- self.add_string(
- KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
-
def add_head_count(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)
- def add_token_list(self, tokens: List):
+ def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
self.add_array(KEY_TOKENIZER_LIST, tokens)
- def add_token_merges(self, merges: List):
+ def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
self.add_array(KEY_TOKENIZER_MERGES, merges)
- def add_token_types(self, types: List[int]):
+ def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]):
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
- def add_token_scores(self, scores: List[float]):
+ def add_token_scores(self, scores: Sequence[float]):
self.add_array(KEY_TOKENIZER_SCORES, scores)
def add_bos_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
+class SpecialVocab:
+ load_merges: bool = False
+ merges: List[str] = []
+ special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
+ special_token_ids: Dict[str, int] = {}
+
+ def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None):
+ self.special_token_ids = {}
+ self.load_merges = load_merges
+ if special_token_types is not None:
+ self.special_token_types = special_token_types
+ self.load(path)
+
+ def load(self, path: Path):
+ if not self.try_load_from_tokenizer_json(path):
+ self.try_load_from_config_json(path)
+
+ def try_load_from_tokenizer_json(self, path: Path) -> bool:
+ tokenizer_file = path / 'tokenizer.json'
+ if not tokenizer_file.is_file():
+ return False
+ with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
+ tokenizer = json.load(f)
+ if self.load_merges:
+ merges = tokenizer.get('model', {}).get('merges')
+ if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
+ self.merges = merges
+ tokenizer_config_file = path / 'tokenizer_config.json'
+ added_tokens = tokenizer.get('added_tokens')
+ if added_tokens is None or not tokenizer_config_file.is_file():
+ return True
+ with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
+ tokenizer_config = json.load(f)
+ for typ in self.special_token_types:
+ entry = tokenizer_config.get(f'{typ}_token')
+ if isinstance(entry, str):
+ tc_content = entry
+ elif isinstance(entry, dict):
+ entry_content = entry.get('content')
+ if not isinstance(entry_content, str):
+ continue
+ tc_content = entry_content
+ else:
+ continue
+ for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
+ if isinstance(maybe_token_id, int):
+ self.special_token_ids[typ] = maybe_token_id
+ break
+ return True
+
+ def try_load_from_config_json(self, path: Path) -> bool:
+ config_file = path / 'config.json'
+ if not config_file.is_file():
+ return False
+ with open(config_file, 'r', encoding = 'utf-8') as f:
+ config = json.load(f)
+ for typ in self.special_token_types:
+ maybe_token_id = config.get(f'{typ}_token_id')
+ if isinstance(maybe_token_id, int):
+ self.special_token_ids[typ] = maybe_token_id
+ return True
+
+ def add_to_gguf(self, gw: GGUFWriter):
+ if len(self.merges) > 0:
+ print(f'gguf: Adding {len(self.merges)} merge(s).')
+ gw.add_token_merges(self.merges)
+ for typ, tokid in self.special_token_ids.items():
+ handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
+ if handler is None:
+ print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
+ continue
+ print(f'gguf: Setting special token type {typ} to {tokid}')
+ handler(tokid)
+
+ def __repr__(self):
+ return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
+
+
# Example usage:
if __name__ == "__main__":
# Example usage with a file
authors = ["GGML <ggml@ggml.ai>"]
packages = [
{include = "gguf"},
+ {include = "gguf/py.typed"},
]
readme = "README.md"
homepage = "https://ggml.ai"