--- /dev/null
+" LLM-based text completion using llama.cpp
+"
+" requires:
+"
+" - neovim
+" - curl
+" - llama.cpp server instance
+" - FIM-compatible model
+"
+" sample config:
+"
+" - Tab - accept the current suggestion
+" - Shift+Tab - accept just the first line of the segguestion
+" - Ctrl+F - toggle FIM completion manually
+"
+" make symlink or copy this file to ~/.config/nvim/autoload/llama.vim
+"
+" start the llama.cpp server with a FIM-compatible model. for example:
+"
+" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
+"
+" --batch-size [512, model max context]
+"
+" adjust the batch size to control how much of the provided local context will be used during the inference
+" lower values will use smaller part of the context around the cursor, which will result in faster processing
+"
+" --ubatch-size [64, 2048]
+"
+" chunks the batch into smaller chunks for faster processing
+" depends on the specific hardware. use llama-bench to profile and determine the best size
+"
+" --cache-reuse (ge:llama_config.n_predict, 1024]
+"
+" this should be either 0 (disabled) or strictly larger than g:llama_config.n_predict
+" using non-zero value enables context reuse on the server side which dramatically improves the performance at
+" large contexts. a value of 256 should be good for all cases
+"
+" run this once to initialise llama.vim:
+"
+" :call llama#init()
+"
+" more info: https://github.com/ggerganov/llama.cpp/pull/9787
+"
+
+" colors (adjust to your liking)
+highlight llama_hl_hint guifg=#ff772f
+highlight llama_hl_info guifg=#77ff2f
+
+" general parameters:
+"
+" endpoint: llama.cpp server endpoint
+" n_prefix: number of lines before the cursor location to include in the local prefix
+" n_suffix: number of lines after the cursor location to include in the local suffix
+" n_predict: max number of tokens to predict
+" t_max_prompt_ms: max alloted time for the prompt processing (TODO: not yet supported)
+" t_max_predict_ms: max alloted time for the prediction
+" show_info: show extra info about the inference (0 - disabled, 1 - statusline, 2 - inline)
+" auto_fim: trigger FIM completion automatically on cursor movement
+" max_line_suffix: do not auto-trigger FIM completion if there are more than this number of characters to the right of the cursor
+"
+" ring buffer of chunks, accumulated with time upon:
+"
+" - completion request
+" - yank
+" - entering a buffer
+" - leaving a buffer
+" - writing a file
+"
+" parameters for the ring-buffer with extra context:
+"
+" ring_n_chunks: max number of chunks to pass as extra context to the server (0 to disable)
+" ring_chunk_size: max size of the chunks (in number of lines)
+" note: adjust these numbers so that you don't overrun your context
+" at ring_n_chunks = 64 and ring_chunk_size = 64 you need ~32k context
+" ring_scope: the range around the cursor position (in number of lines) for gathering chunks after FIM
+" ring_update_ms: how often to process queued chunks in normal mode
+"
+let s:default_config = {
+ \ 'endpoint': 'http://127.0.0.1:8012/infill',
+ \ 'n_prefix': 256,
+ \ 'n_suffix': 64,
+ \ 'n_predict': 128,
+ \ 't_max_prompt_ms': 500,
+ \ 't_max_predict_ms': 1000,
+ \ 'show_info': 2,
+ \ 'auto_fim': v:true,
+ \ 'max_line_suffix': 8,
+ \ 'ring_n_chunks': 64,
+ \ 'ring_chunk_size': 64,
+ \ 'ring_scope': 1024,
+ \ 'ring_update_ms': 1000,
+ \ }
+
+let g:llama_config = get(g:, 'llama_config', s:default_config)
+
+function! s:rand(i0, i1) abort
+ return a:i0 + rand() % (a:i1 - a:i0 + 1)
+endfunction
+
+function! llama#init()
+ if !executable('curl')
+ echohl WarningMsg
+ echo 'llama.vim requires the "curl" command to be available'
+ echohl None
+ return
+ endif
+
+ let s:pos_x = 0 " cursor position upon start of completion
+ let s:pos_y = 0
+
+ let s:line_cur = ''
+
+ let s:line_cur_prefix = ''
+ let s:line_cur_suffix = ''
+
+ let s:ring_chunks = [] " current set of chunks used as extra context
+ let s:ring_queued = [] " chunks that are queued to be sent for processing
+ let s:ring_n_evict = 0
+
+ let s:hint_shown = v:false
+ let s:pos_y_pick = -9999 " last y where we picked a chunk
+ let s:pos_dx = 0
+ let s:content = []
+ let s:can_accept = v:false
+
+ let s:timer_fim = -1
+ let s:t_fim_start = reltime() " used to measure total FIM time
+ let s:t_last_move = reltime() " last time the cursor moved
+
+ let s:current_job = v:null
+
+ augroup llama
+ autocmd!
+ autocmd InsertEnter * inoremap <expr> <silent> <C-F> llama#fim_inline(v:false)
+ autocmd InsertLeavePre * call llama#fim_cancel()
+
+ autocmd CursorMoved * call s:on_move()
+ autocmd CursorMovedI * call s:on_move()
+ autocmd CompleteChanged * call llama#fim_cancel()
+
+ if g:llama_config.auto_fim
+ autocmd CursorMovedI * call llama#fim(v:true)
+ endif
+
+ " gather chunks upon yanking
+ autocmd TextYankPost * if v:event.operator ==# 'y' | call s:pick_chunk(v:event.regcontents, v:false, v:true) | endif
+
+ " gather chunks upon entering/leaving a buffer
+ autocmd BufEnter * call timer_start(100, {-> s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)})
+ autocmd BufLeave * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
+
+ " gather chunk upon saving the file
+ autocmd BufWritePost * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
+ augroup END
+
+ silent! call llama#fim_cancel()
+
+ " init background update of the ring buffer
+ if g:llama_config.ring_n_chunks > 0
+ call s:ring_update()
+ endif
+endfunction
+
+" compute how similar two chunks of text are
+" 0 - no similarity, 1 - high similarity
+" TODO: figure out something better
+function! s:chunk_sim(c0, c1)
+ let l:lines0 = len(a:c0)
+ let l:lines1 = len(a:c1)
+
+ let l:common = 0
+
+ for l:line0 in a:c0
+ for l:line1 in a:c1
+ if l:line0 == l:line1
+ let l:common += 1
+ break
+ endif
+ endfor
+ endfor
+
+ return 2.0 * l:common / (l:lines0 + l:lines1)
+endfunction
+
+" pick a random chunk of size g:llama_config.ring_chunk_size from the provided text and queue it for processing
+"
+" no_mod - do not pick chunks from buffers with pending changes
+" do_evict - evict chunks that are very similar to the new one
+"
+function! s:pick_chunk(text, no_mod, do_evict)
+ " do not pick chunks from buffers with pending changes or buffers that are not files
+ if a:no_mod && (getbufvar(bufnr('%'), '&modified') || !buflisted(bufnr('%')) || !filereadable(expand('%')))
+ return
+ endif
+
+ " if the extra context option is disabled - do nothing
+ if g:llama_config.ring_n_chunks <= 0
+ return
+ endif
+
+ " don't pick very small chunks
+ if len(a:text) < 3
+ return
+ endif
+
+ if len(a:text) + 1 < g:llama_config.ring_chunk_size
+ let l:chunk = a:text
+ else
+ let l:l0 = s:rand(0, max([0, len(a:text) - g:llama_config.ring_chunk_size/2]))
+ let l:l1 = min([l:l0 + g:llama_config.ring_chunk_size/2, len(a:text)])
+
+ let l:chunk = a:text[l:l0:l:l1]
+ endif
+
+ let l:chunk_str = join(l:chunk, "\n") . "\n"
+
+ " check if this chunk is already added
+ let l:exist = v:false
+
+ for i in range(len(s:ring_chunks))
+ if s:ring_chunks[i].data == l:chunk
+ let l:exist = v:true
+ break
+ endif
+ endfor
+
+ for i in range(len(s:ring_queued))
+ if s:ring_queued[i].data == l:chunk
+ let l:exist = v:true
+ break
+ endif
+ endfor
+
+ if l:exist
+ return
+ endif
+
+ " evict queued chunks that are very similar to the new one
+ for i in range(len(s:ring_queued) - 1, 0, -1)
+ if s:chunk_sim(s:ring_queued[i].data, l:chunk) > 0.9
+ if a:do_evict
+ call remove(s:ring_queued, i)
+ let s:ring_n_evict += 1
+ else
+ return
+ endif
+ endif
+ endfor
+
+ " also from s:ring_chunks
+ for i in range(len(s:ring_chunks) - 1, 0, -1)
+ if s:chunk_sim(s:ring_chunks[i].data, l:chunk) > 0.9
+ if a:do_evict
+ call remove(s:ring_chunks, i)
+ let s:ring_n_evict += 1
+ else
+ return
+ endif
+ endif
+ endfor
+
+ " TODO: become parameter ?
+ if len(s:ring_queued) == 16
+ call remove(s:ring_queued, 0)
+ endif
+
+ call add(s:ring_queued, {'data': l:chunk, 'str': l:chunk_str, 'time': reltime(), 'filename': expand('%')})
+
+ "let &statusline = 'extra context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
+endfunction
+
+" picks a queued chunk, sends it for processing and adds it to s:ring_chunks
+" called every g:llama_config.ring_update_ms
+function! s:ring_update()
+ call timer_start(g:llama_config.ring_update_ms, {-> s:ring_update()})
+
+ " update only if in normal mode or if the cursor hasn't moved for a while
+ if mode() !=# 'n' && reltimefloat(reltime(s:t_last_move)) < 3.0
+ return
+ endif
+
+ if len(s:ring_queued) == 0
+ return
+ endif
+
+ " move the first queued chunk to the ring buffer
+ if len(s:ring_chunks) == g:llama_config.ring_n_chunks
+ call remove(s:ring_chunks, 0)
+ endif
+
+ call add(s:ring_chunks, remove(s:ring_queued, 0))
+
+ "let &statusline = 'updated context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
+
+ " send asynchronous job with the new extra context so that it is ready for the next FIM
+ let l:extra_context = []
+ for l:chunk in s:ring_chunks
+ call add(l:extra_context, {
+ \ 'text': l:chunk.str,
+ \ 'time': l:chunk.time,
+ \ 'filename': l:chunk.filename
+ \ })
+ endfor
+
+ " no samplers needed here
+ let l:request = json_encode({
+ \ 'input_prefix': "",
+ \ 'input_suffix': "",
+ \ 'input_extra': l:extra_context,
+ \ 'prompt': "",
+ \ 'n_predict': 1,
+ \ 'temperature': 0.0,
+ \ 'stream': v:false,
+ \ 'samplers': ["temperature"],
+ \ 'cache_prompt': v:true,
+ \ 't_max_prompt_ms': 1,
+ \ 't_max_predict_ms': 1
+ \ })
+
+ let l:curl_command = printf(
+ \ "curl --silent --no-buffer --request POST --url %s --header \"Content-Type: application/json\" --data %s",
+ \ g:llama_config.endpoint, shellescape(l:request)
+ \ )
+
+ " no callbacks because we don't need to process the response
+ call jobstart(l:curl_command, {})
+endfunction
+
+" necessary for 'inoremap <expr>'
+function! llama#fim_inline(is_auto) abort
+ call llama#fim(a:is_auto)
+ return ''
+endfunction
+
+" the main FIM call
+" takes local context around the cursor and sends it together with the extra context to the server for completion
+function! llama#fim(is_auto) abort
+ " we already have a suggestion for the current cursor position
+ if s:hint_shown && !a:is_auto
+ call llama#fim_cancel()
+ return
+ endif
+
+ call llama#fim_cancel()
+
+ " avoid sending repeated requests too fast
+ if reltimefloat(reltime(s:t_fim_start)) < 0.6
+ if s:timer_fim != -1
+ call timer_stop(s:timer_fim)
+ let s:timer_fim = -1
+ endif
+
+ let s:t_fim_start = reltime()
+ let s:timer_fim = timer_start(600, {-> llama#fim(v:true)})
+ return
+ endif
+
+ let s:t_fim_start = reltime()
+
+ let s:content = []
+ let s:can_accept = v:false
+
+ let s:pos_x = col('.') - 1
+ let s:pos_y = line('.')
+ let l:max_y = line('$')
+
+ let l:lines_prefix = getline(max([1, s:pos_y - g:llama_config.n_prefix]), s:pos_y - 1)
+ let l:lines_suffix = getline(s:pos_y + 1, min([l:max_y, s:pos_y + g:llama_config.n_suffix]))
+
+ let s:line_cur = getline('.')
+
+ let s:line_cur_prefix = strpart(s:line_cur, 0, s:pos_x)
+ let s:line_cur_suffix = strpart(s:line_cur, s:pos_x)
+
+ if a:is_auto && len(s:line_cur_suffix) > g:llama_config.max_line_suffix
+ return
+ endif
+
+ let l:prefix = ""
+ \ . join(l:lines_prefix, "\n")
+ \ . "\n"
+
+ let l:prompt = ""
+ \ . s:line_cur_prefix
+
+ let l:suffix = ""
+ \ . s:line_cur_suffix
+ \ . "\n"
+ \ . join(l:lines_suffix, "\n")
+ \ . "\n"
+
+ " prepare the extra context data
+ let l:extra_context = []
+ for l:chunk in s:ring_chunks
+ call add(l:extra_context, {
+ \ 'text': l:chunk.str,
+ \ 'time': l:chunk.time,
+ \ 'filename': l:chunk.filename
+ \ })
+ endfor
+
+ " the indentation of the current line
+ let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
+
+ let l:request = json_encode({
+ \ 'input_prefix': l:prefix,
+ \ 'input_suffix': l:suffix,
+ \ 'input_extra': l:extra_context,
+ \ 'prompt': l:prompt,
+ \ 'n_predict': g:llama_config.n_predict,
+ \ 'n_indent': l:indent,
+ \ 'top_k': 40,
+ \ 'top_p': 0.99,
+ \ 'stream': v:false,
+ \ 'samplers': ["top_k", "top_p", "infill"],
+ \ 'cache_prompt': v:true,
+ \ 't_max_prompt_ms': g:llama_config.t_max_prompt_ms,
+ \ 't_max_predict_ms': g:llama_config.t_max_predict_ms
+ \ })
+
+ let l:curl_command = printf(
+ \ "curl --silent --no-buffer --request POST --url %s --header \"Content-Type: application/json\" --data %s",
+ \ g:llama_config.endpoint, shellescape(l:request)
+ \ )
+
+ if s:current_job != v:null
+ call jobstop(s:current_job)
+ endif
+
+ " send the request asynchronously
+ let s:current_job = jobstart(l:curl_command, {
+ \ 'on_stdout': function('s:fim_on_stdout'),
+ \ 'on_exit': function('s:fim_on_exit'),
+ \ 'stdout_buffered': v:true,
+ \ 'pos_x': s:pos_x,
+ \ 'pos_y': s:pos_y,
+ \ 'is_auto': a:is_auto
+ \ })
+
+ " TODO: per-file location
+ let l:delta_y = abs(s:pos_y - s:pos_y_pick)
+
+ " gather some extra context nearby and process it in the background
+ " only gather chunks if the cursor has moved a lot
+ " TODO: something more clever? reranking?
+ if a:is_auto && l:delta_y > 32
+ " expand the prefix even further
+ call s:pick_chunk(getline(max([1, s:pos_y - g:llama_config.ring_scope]), max([1, s:pos_y - g:llama_config.n_prefix])), v:false, v:false)
+
+ " pick a suffix chunk
+ call s:pick_chunk(getline(min([l:max_y, s:pos_y + g:llama_config.n_suffix]), min([l:max_y, s:pos_y + g:llama_config.n_suffix + g:llama_config.ring_chunk_size])), v:false, v:false)
+
+ let s:pos_y_pick = s:pos_y
+ endif
+endfunction
+
+" if first_line == v:true accept only the first line of the response
+function! llama#fim_accept(first_line)
+ " insert the suggestion at the cursor location
+ if s:can_accept && len(s:content) > 0
+ call setline(s:pos_y, s:line_cur[:(s:pos_x - 1)] . s:content[0])
+ if len(s:content) > 1
+ if !a:first_line
+ call append(s:pos_y, s:content[1:-1])
+ endif
+ endif
+
+ " move the cursor to the end of the accepted text
+ if !a:first_line && len(s:content) > 1
+ call cursor(s:pos_y + len(s:content) - 1, s:pos_x + s:pos_dx + 1)
+ else
+ call cursor(s:pos_y, s:pos_x + len(s:content[0]))
+ endif
+ endif
+
+ call llama#fim_cancel()
+endfunction
+
+function! llama#fim_cancel()
+ let s:hint_shown = v:false
+
+ " clear the virtual text
+ let l:bufnr = bufnr('%')
+
+ let l:id_vt_fim = nvim_create_namespace('vt_fim')
+ let l:id_vt_info = nvim_create_namespace('vt_info')
+
+ call nvim_buf_clear_namespace(l:bufnr, l:id_vt_fim, 0, -1)
+ call nvim_buf_clear_namespace(l:bufnr, l:id_vt_info, 0, -1)
+
+ " remove the mappings
+ silent! iunmap <buffer> <Tab>
+ silent! iunmap <buffer> <S-Tab>
+ silent! iunmap <buffer> <Esc>
+endfunction
+
+function! s:on_move()
+ let s:t_last_move = reltime()
+
+ call llama#fim_cancel()
+endfunction
+
+" callback that processes the FIM result from the server and displays the suggestion
+function! s:fim_on_stdout(job_id, data, event) dict
+ let l:raw = join(a:data, "\n")
+ if len(l:raw) == 0
+ return
+ endif
+
+ if self.pos_x != col('.') - 1 || self.pos_y != line('.')
+ return
+ endif
+
+ " show the suggestion only in insert mode
+ if mode() !=# 'i'
+ return
+ endif
+
+ let s:pos_x = self.pos_x
+ let s:pos_y = self.pos_y
+
+ let s:can_accept = v:true
+ let l:has_info = v:false
+
+ if s:can_accept && v:shell_error
+ if !self.is_auto
+ call add(s:content, "<| curl error: is the server on? |>")
+ endif
+ let s:can_accept = v:false
+ endif
+
+ let l:n_prompt = 0
+ let l:t_prompt_ms = 1.0
+ let l:s_prompt = 0
+
+ let l:n_predict = 0
+ let l:t_predict_ms = 1.0
+ let l:s_predict = 0
+
+ " get the generated suggestion
+ if s:can_accept
+ let l:response = json_decode(l:raw)
+
+ for l:part in split(get(l:response, 'content', ''), "\n", 1)
+ call add(s:content, l:part)
+ endfor
+
+ " remove trailing new lines
+ while len(s:content) > 0 && s:content[-1] == ""
+ call remove(s:content, -1)
+ endwhile
+
+ let l:generation_settings = get(l:response, 'generation_settings', {})
+ let l:n_ctx = get(l:generation_settings, 'n_ctx', 0)
+
+ let l:n_cached = get(l:response, 'tokens_cached', 0)
+ let l:truncated = get(l:response, 'truncated', v:false)
+
+ " if response.timings is available
+ if len(get(l:response, 'timings', {})) > 0
+ let l:has_info = v:true
+ let l:timings = get(l:response, 'timings', {})
+
+ let l:n_prompt = get(l:timings, 'prompt_n', 0)
+ let l:t_prompt_ms = get(l:timings, 'prompt_ms', 1)
+ let l:s_prompt = get(l:timings, 'prompt_per_second', 0)
+
+ let l:n_predict = get(l:timings, 'predicted_n', 0)
+ let l:t_predict_ms = get(l:timings, 'predicted_ms', 1)
+ let l:s_predict = get(l:timings, 'predicted_per_second', 0)
+ endif
+ endif
+
+ if len(s:content) == 0
+ call add(s:content, "")
+ let s:can_accept = v:false
+ endif
+
+ if len(s:content) == 0
+ return
+ endif
+
+ " NOTE: the following is logic for discarding predictions that repeat existing text
+ " the code is quite ugly and there is very likely a simpler and more canonical way to implement this
+ "
+ " still, I wonder if there is some better way that avoids having to do these special hacks?
+ " on one hand, the LLM 'sees' the contents of the file before we start editing, so it is normal that it would
+ " start generating whatever we have given it via the extra context. but on the other hand, it's not very
+ " helpful to re-generate the same code that is already there
+
+ " truncate the suggestion if the first line is empty
+ if len(s:content) == 1 && s:content[0] == ""
+ let s:content = [""]
+ endif
+
+ " ... and the next lines are repeated
+ if len(s:content) > 1 && s:content[0] == "" && s:content[1:] == getline(s:pos_y + 1, s:pos_y + len(s:content) - 1)
+ let s:content = [""]
+ endif
+
+ " truncate the suggestion if it repeats the suffix
+ if len(s:content) == 1 && s:content[0] == s:line_cur_suffix
+ let s:content = [""]
+ endif
+
+ " find the first non-empty line (strip whitespace)
+ let l:cmp_y = s:pos_y + 1
+ while l:cmp_y < line('$') && getline(l:cmp_y) =~? '^\s*$'
+ let l:cmp_y += 1
+ endwhile
+
+ if (s:line_cur_prefix . s:content[0]) == getline(l:cmp_y)
+ " truncate the suggestion if it repeats the next line
+ if len(s:content) == 1
+ let s:content = [""]
+ endif
+
+ " ... or if the second line of the suggestion is the prefix of line l:cmp_y + 1
+ if len(s:content) == 2 && s:content[-1] == getline(l:cmp_y + 1)[:len(s:content[-1]) - 1]
+ let s:content = [""]
+ endif
+
+ " ... or if the middle chunk of lines of the suggestion is the same as [l:cmp_y + 1, l:cmp_y + len(s:content) - 1)
+ if len(s:content) > 2 && join(s:content[1:-1], "\n") == join(getline(l:cmp_y + 1, l:cmp_y + len(s:content) - 1), "\n")
+ let s:content = [""]
+ endif
+ endif
+
+ " keep only lines that have the same or larger whitespace prefix as s:line_cur_prefix
+ "let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
+ "for i in range(1, len(s:content) - 1)
+ " if strlen(matchstr(s:content[i], '^\s*')) < l:indent
+ " let s:content = s:content[:i - 1]
+ " break
+ " endif
+ "endfor
+
+ let s:pos_dx = len(s:content[-1])
+
+ let s:content[-1] .= s:line_cur_suffix
+
+ call llama#fim_cancel()
+
+ " display virtual text with the suggestion
+ let l:bufnr = bufnr('%')
+
+ let l:id_vt_fim = nvim_create_namespace('vt_fim')
+ let l:id_vt_info = nvim_create_namespace('vt_info')
+
+ " construct the info message
+ if g:llama_config.show_info > 0 && l:has_info
+ " prefix the info string with whitespace in order to offset it to the right of the fim overlay
+ let l:prefix = repeat(' ', len(s:content[0]) - len(s:line_cur_suffix) + 3)
+
+ if l:truncated
+ let l:info = printf("%s | WARNING: the context is full: %d / %d, increase the server context size or reduce g:llama_config.ring_n_chunks",
+ \ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
+ \ l:n_cached, l:n_ctx
+ \ )
+ else
+ let l:info = printf("%s | c: %d / %d, r: %d / %d, e: %d, q: %d / 16 | p: %d (%.2f ms, %.2f t/s) | g: %d (%.2f ms, %.2f t/s) | t: %.2f ms",
+ \ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
+ \ l:n_cached, l:n_ctx, len(s:ring_chunks), g:llama_config.ring_n_chunks, s:ring_n_evict, len(s:ring_queued),
+ \ l:n_prompt, l:t_prompt_ms, l:s_prompt,
+ \ l:n_predict, l:t_predict_ms, l:s_predict,
+ \ 1000.0 * reltimefloat(reltime(s:t_fim_start))
+ \ )
+ endif
+
+ if g:llama_config.show_info == 1
+ "" display it in the statusline
+ let &statusline = l:info
+ elseif g:llama_config.show_info == 2
+ " display it to the right of the current line
+ call nvim_buf_set_extmark(l:bufnr, l:id_vt_info, s:pos_y - 1, s:pos_x - 1, {
+ \ 'virt_text': [[l:info, 'llama_hl_info']],
+ \ 'virt_text_pos': 'eol',
+ \ })
+ endif
+ endif
+
+ " display the suggestion
+ call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, s:pos_x - 1, {
+ \ 'virt_text': [[s:content[0], 'llama_hl_hint']],
+ \ 'virt_text_win_col': virtcol('.') - 1
+ \ })
+
+ call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, 0, {
+ \ 'virt_lines': map(s:content[1:], {idx, val -> [[val, 'llama_hl_hint']]}),
+ \ 'virt_text_win_col': virtcol('.')
+ \ })
+
+ " setup accept shortcuts
+ inoremap <buffer> <Tab> <C-O>:call llama#fim_accept(v:false)<CR>
+ inoremap <buffer> <S-Tab> <C-O>:call llama#fim_accept(v:true)<CR>
+
+ let s:hint_shown = v:true
+endfunction
+
+function! s:fim_on_exit(job_id, exit_code, event) dict
+ if a:exit_code != 0
+ echom "Job failed with exit code: " . a:exit_code
+ endif
+
+ let s:current_job = v:null
+endfunction