special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
+ def _set_vocab_mistral(self):
+ if not _mistral_common_installed:
+ raise ImportError(_mistral_import_error_msg)
+
+ vocab = MistralVocab(self.dir_model)
+ logger.info(
+ f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
+ )
+
+ self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
+
+ tokens = []
+ scores = []
+ toktypes = []
+
+ for text, score, toktype in vocab.all_tokens():
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ assert len(tokens) == vocab.vocab_size, (
+ f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
+ )
+
+ if vocab.tokenizer_type == MistralTokenizerType.tekken:
+ self.gguf_writer.add_tokenizer_pre("tekken")
+ self.gguf_writer.add_token_merges(
+ vocab.extract_vocab_merges_from_model()
+ )
+
+ logger.info(
+ f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
+ )
+
+ self.gguf_writer.add_bos_token_id(vocab.bos_id)
+ self.gguf_writer.add_eos_token_id(vocab.eos_id)
+ self.gguf_writer.add_unk_token_id(vocab.unk_id)
+ self.gguf_writer.add_pad_token_id(vocab.pad_id)
+
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+ self.gguf_writer.add_vocab_size(vocab.vocab_size)
+
+ self.gguf_writer.add_add_bos_token(True)
+ self.gguf_writer.add_add_eos_token(False)
+
+ local_template_file_path = self.dir_model / "chat_template.jinja"
+
+ if self.is_mistral_format and local_template_file_path.is_file():
+ # Ministral-3 and other new Mistral models come with chat templates.
+ # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
+ logger.info("Using an existing Mistral local chat template.")
+
+ with open(local_template_file_path, "r", encoding="utf-8") as f:
+ template = f.read()
+ elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
+ template_dir = Path(__file__).parent / "models/templates/"
+
+ # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
+ if self.is_mistral_format:
+ logger.info(
+ "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
+ "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
+ )
+ template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
+ else:
+ logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
+ template = None
+
+ if template is not None:
+ self.gguf_writer.add_chat_template(template)
+
class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
- def _set_vocab_mistral(self):
- if not _mistral_common_installed:
- raise ImportError(_mistral_import_error_msg)
-
- vocab = MistralVocab(self.dir_model)
- logger.info(
- f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
- )
-
- self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
-
- tokens = []
- scores = []
- toktypes = []
-
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
-
- assert len(tokens) == vocab.vocab_size, (
- f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
- )
-
- if vocab.tokenizer_type == MistralTokenizerType.tekken:
- self.gguf_writer.add_tokenizer_pre("tekken")
- self.gguf_writer.add_token_merges(
- vocab.extract_vocab_merges_from_model()
- )
-
- logger.info(
- f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
- )
-
- self.gguf_writer.add_bos_token_id(vocab.bos_id)
- self.gguf_writer.add_eos_token_id(vocab.eos_id)
- self.gguf_writer.add_unk_token_id(vocab.unk_id)
- self.gguf_writer.add_pad_token_id(vocab.pad_id)
-
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_vocab_size(vocab.vocab_size)
-
- self.gguf_writer.add_add_bos_token(True)
- self.gguf_writer.add_add_eos_token(False)
-
- local_template_file_path = self.dir_model / "chat_template.jinja"
-
- if self.is_mistral_format and local_template_file_path.is_file():
- # Ministral-3 and other new Mistral models come with chat templates.
- # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
- logger.info("Using an existing Mistral local chat template.")
-
- with open(local_template_file_path, "r", encoding="utf-8") as f:
- template = f.read()
- elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
- template_dir = Path(__file__).parent / "models/templates/"
-
- # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
- if self.is_mistral_format:
- logger.info(
- "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
- "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
- )
- template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
- else:
- logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
- template = None
-
- if template is not None:
- self.gguf_writer.add_chat_template(template)
-
def set_vocab(self):
if self.is_mistral_format:
return self._set_vocab_mistral()
def set_gguf_parameters(self):
super().set_gguf_parameters()
- if "yarn" in self.hparams:
- yarn_params = self.hparams["yarn"]
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
- self.gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
- self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
- self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
- self.gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
- self.gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
+ MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
- if "llama_4_scaling" in self.hparams:
- self.gguf_writer.add_attn_temperature_scale(self.hparams["llama_4_scaling"]["beta"])
+ @staticmethod
+ def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
+ if "yarn" in hparams:
+ yarn_params = hparams["yarn"]
+ gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+ gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
+ gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
+ gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
+ gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
+ gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
+
+ if "llama_4_scaling" in hparams:
+ gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
+
+
+class MistralMoeModel(DeepseekV2Model):
+ model_arch = gguf.MODEL_ARCH.DEEPSEEK2
+ model_name = "Mistral"
+ hf_arch = ""
+ is_mistral_format = True
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ logger.info("Using MistralMoeModel")
+ # remap hparams from Mistral MoE format to DeepseekV2 format
+ # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
+ # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
+ config = self.hparams
+ # Mistral key -> HF key
+ config_mapping = {
+ "dim": "hidden_size",
+ "norm_eps": "rms_norm_eps",
+ "n_kv_heads": "num_key_value_heads",
+ "n_layers": "num_hidden_layers",
+ "n_heads": "num_attention_heads",
+ "hidden_dim": "intermediate_size",
+ }
+ # HF key -> (Mistral key, default value)
+ top_level_mapping_with_default = {
+ "model_type": ("model_type", "transformer"),
+ "hidden_act": ("activation", "silu"),
+ "tie_word_embeddings": ("tied_embeddings", False),
+ "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
+ "max_position_embeddings": ("max_position_embeddings", 128_000),
+ }
+ # mapping top-level keys
+ for key, new_key in config_mapping.items():
+ if key in config:
+ config[new_key] = config[key]
+ for new_key, (key, default_value) in top_level_mapping_with_default.items():
+ config[new_key] = config.get(key, default_value)
+ # mapping MoE-specific keys
+ moe_config_map = {
+ "route_every_n": "moe_layer_freq",
+ "first_k_dense_replace": "first_k_dense_replace",
+ "num_experts_per_tok": "num_experts_per_tok",
+ "num_experts": "n_routed_experts",
+ "expert_hidden_dim": "moe_intermediate_size",
+ "routed_scale": "routed_scaling_factor",
+ "num_shared_experts": "n_shared_experts",
+ "num_expert_groups": "n_group",
+ "num_expert_groups_per_tok": "topk_group",
+ }
+ moe = config["moe"]
+ for key, new_key in moe_config_map.items():
+ if key in moe:
+ config[new_key] = moe[key]
+ # provide missing values
+ config["topk_method"] = None
+ config["norm_topk_prob"] = True
+ config["scoring_func"] = "softmax"
+
+ def set_vocab(self):
+ self._set_vocab_mistral()
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
+ yarn_params = self.hparams["yarn"]
+ self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
+ self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
+ if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
+ return []
+
+ # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
+ if name.endswith(".qscale_act"):
+ name = name.replace(".qscale_act", ".input_scale")
+ if name.endswith(".qscale_weight"):
+ name = name.replace(".qscale_weight", ".weight_scale")
+ if ".wkv_b." in name:
+ name = name.replace(".wkv_b.", ".kv_b_proj.")
+ if ".experts." in name:
+ name = name.replace(".experts.", ".mlp.experts.")
+ name = name.replace(".w1.", ".gate_proj.")
+ name = name.replace(".w2.", ".down_proj.")
+ name = name.replace(".w3.", ".up_proj.")
+ name = "model." + name
+
+ return super().modify_tensors(data_torch, name, bid)
class PixtralModel(LlavaVisionModel):
elif args.mmproj:
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
model_class = PixtralModel
+ elif "moe" in hparams:
+ model_class = MistralMoeModel
else:
model_class = MistralModel
"model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
"model.layers.{bid}.feed_forward.gate", # lfm2moe
"model.layers.{bid}.mlp.router.gate", # afmoe
+ "layers.{bid}.gate", # mistral-large
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
"model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
"model.layers.{bid}.feed_forward.down_proj",
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
+ "layers.{bid}.shared_experts.w3", # mistral-large
),
MODEL_TENSOR.FFN_UP_CHEXP: (
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
"model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
"model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
+ "layers.{bid}.shared_experts.w1", # mistral-large
),
MODEL_TENSOR.FFN_GATE_CHEXP: (
"model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
"model.layers.{bid}.shared_mlp.output_linear", # granitemoe
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
+ "layers.{bid}.shared_experts.w2", # mistral-large
),
MODEL_TENSOR.FFN_DOWN_CHEXP: (
MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
+ "layers.{bid}.attention.wq_a", # mistral-large
),
MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
+ "layers.{bid}.attention.wq_b", # mistral-large
),
MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
+ "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
),
MODEL_TENSOR.ATTN_KV_B: (
MODEL_TENSOR.ATTN_K_B: (
"model.layers.{bid}.self_attn.k_b_proj", # deepseek2
+ "layers.{bid}.attention.k_b_proj", # mistral-large
),
MODEL_TENSOR.ATTN_V_B: (
"model.layers.{bid}.self_attn.v_b_proj", # deepseek2
+ "layers.{bid}.attention.v_b_proj", # mistral-large
),
MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
+ "layers.{bid}.attention.q_a_norm", # mistral-large
),
MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
+ "layers.{bid}.attention.kv_a_norm", # mistral-large
),
MODEL_TENSOR.ATTN_SUB_NORM: (